
VII  

L O G I C  

7.1. The propositional calculus 

The word “logic” has many different meanings. I shall not try 
to give a definition of intuitionistic logic, any more than I have 
begun this course by a definition of mathematics. Yet a preliminary 
remark will be useful. Our logic has only to do with mathematical 
propositions ; the question whether it admits any applications 
outside mathematics does not concern us here. The letters p ,  q, r 
occur in this chapter as variables for mathematical propositions ; 
German letters p ,  q, t: will be used as abbreviations for mathematical 
propositions. It is not my purpose to give a complete formal 
treatment of intuitionistic logic; a formal system which codifies all 
the logical inferences of intuitionistic mathematics known at 
present, is easily accessible in Kleene’s book [S. C. Kleene 19521, 
where the reader will also find an account of the metamathematical 
investigations of this system. Here I shall only call your attention 
to some formulas which express interesting methods of reasoning 
and show why these methods are intuitively clear within the realm 
of intuitionistic mathematics. 

It will be necessary to fix, as firmly as possible, the meaning of 
the logical connectives; I do this by giving necessary and sufficient 
conditions under which a complex expression can be asserted. 

7.1.1. Interpretation of the signs 

The conjunction A gives no difficulty. p A q can be asserted if 
and only if both p and q can be asserted. 

I have already spoken of the disjunction v (2.2.5,  at the end). 
p v q can be asserted if and only if at least one of the propositions 
p and q can be asserted. 

The negation 7 is the strong mathematical negation which we 
have already discussed (2.2.2). In  order to give a more explicit 
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clarification, we remember that a mathematical proposition p 
always demands a mathematical construction with certain given 
properties; it can be asserted as soon as such a construction has 
been carried out. We say in this case that the construction proves 
the proposition p and call it  a proof of p .  We also, for the sake of 
brevity, denote by p any construction which is intended by the 
proposition p .  Then -I can be asserted if and only if we possess a 
construction which from the supposition that a construction p 
were carried out, leads to a contradiction. 
SIQN. Is it not necessary to clarify the notion of a contradiction? 
INT. I think that contradiction must be taken as a primitive 
notion. It seems very difficult to reduce it to simpler notions, and 
it is always easy to recognize a contradiction as such. In  practically 
all cases it can be brought into the form 1 = 2. As a simple example, 
let us consider the proposition p G ( i / 2  is rational). It demands 
the construction of integers a, b,  such that a2=2b2.  By a well- 
known argument we may suppose that a and b are relatively 
prime. On the other hand, a is even, so 4 divides a2, hence 4 divides 
2b2, and b is even; thus a and b have the common divisor 2. This 
contradicts the fact that a and b are relatively prime. The contra- 
diction can be given the form: The GGD of a and b is at the same 
time 1 and 2. 

Some mathematicians, and notably Griss, have raised objections 
against the use of contradiction in mathematical reasoning. I shall 
treat these objections in the. next chapter; here I take the point 
of view that the notion of a contradiction is sufficiently clear and 
that the negation which is based on it can be used in mathematics. 

The implication p + q can be asserted, if and only if we possess 
a construction r, which, joined to any construction proving p 
(supposing that the latter be effected), would automatically effect 
a construction proving q. In  other words, a proof of p ,  together 
with r, would form a proof of q. 

Almost every proof in this book consists of such a construction 
as r above. One of the first instances, and a very clear one, is. the 
proof of 2.2.3, Th. 2. 

A logical formula with proposition variables, say %(p,  q, . . .), 
can be asserted, if and only if a(#, q, . . .) can be asserted for 
arbitrary propositions p ,  q, . . . ; that is, if we possess a method of 
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construction which by specialization yields the construction 
demanded by %(p,  q, . . .). For example consider 

W P ,  q)  = (11 A . P -+ * -+ !I)- 

‘i!€(p, q) demands a construction E ,  which from a proof C of @ and 
a proof D of p -+ q yields a proof of q. By the definition of impli- 
cation, E consists simply in the juxtaposition of C and D. Thus 
%(p,  q )  can be asserted. 

In  2.2.2 I gave a criterion for mathematical propositions, namely 
that every mathematical proposition has the form “I have effected 
a construction with the following properties : . . . . . ”. This form is 
preserved by the four logical connectives. It is convenient to 
understand the word ‘(construction’’ in the wider sense, so that 
it can also denote a general method of construction, as was meant 
in the last paragraph but one. If I do this -and I shall do it - , 
every logical formula expresses a mathematical proposition. 

7.1.2. 

In the formulas I use points and brackets in the usual way, 
assuming the convention that -+ binds less strongly that A and v. 
Asserted formulas are marked with t-. 

Though the main differences between classical and intuitionistic 
logic are in the properties of the negation, they do not coincide 
completely in their negationless formulas. p -+ q . v . q -+ p is 
a valid formula in classical logic, but it cannot be asserted in 
intuitionistic logic, as is clear from the definitions. 

In the theory of negation the principle of the excluded middle 
fails. p v i p demands a general method to solve every problem, 
or more explicitly, a general method which for any proposition 
yields by specialization either a proof of p or a proof of i p .  As 
we do not possess such a method of construction, we have no right 
to assert the principle. 

Another form of the principle is ii p -+ p .  We have met many 
examples of propositions for which this fails: the first was “p is 
rational” in 2.2.2. However, 

Theorems of the propositional calculua 

(1) t- P +I1 P- 

It is clear that from p it follows that it is impossible that p is 
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inipossible. I leave it to you to describe completely the method of 
construction which is demanded by ( l ) ,  according to the definitions 
of + and 1 .  

( 2 )  

Another important formula is 
k p + q  * + * 1 q + i  p .  

Of course, the inverse formula, i q +-I p - + . p --f q,  is 
not assertable. (Take q = a # b, p = a # b ,  where a and b are 
real numbers.) 

Applying (2) twice, we find 

(3) ~ p + q Q + - f l l p + l l q .  

(4) t 1 p + 1 1 1 p .  

(5) k l l l p + l p <  

By substitution in (1) we find 

If we substitute ii  p for q in (2), we find, using ( l ) ,  

(4) and (5) show that we need never consider more than two 

From F p - f p v q  follows, by (2), I- i ( p v q )  +-I p ;  in the 
consecutive negations. 

same way we have I- i ( p  v q )  -+ i q, so 

(6) E l  ( p v q ) - + -  P A 1  q* 

(7) l-1 P A 1  q + - 1  ( p v q ) .  

The inverse formula is easily seen to be also true: 

(6) and (7) form one of de Morgan’s equivalences. The other 
one is only half true: 

(8) I - 1  P V l  q . + l  ( P A d .  

1 ( P A  q )  +i p v i  q cannot be asserted, as the following 
example shows. Let p be a # 0 and q be b # 0, where a and b are 
real numbers; then i is a=O and i q is b = 0 .  I proved in 
2.2.5 that ab#O is equivalent to p A q, so ab=O is equivalent to 
1 ( p  A 9): but just before the cited place in 2.2.5 I gave an example 
of real numbers a and b for which ab=O, but neither a=O nor 
b=O is known. 

(9) F l l ( P V 1  P ) .  
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For 1 ( p  v -I p )  would imply, by (6), i p A i i p ,  which is a 
contradiction. (8) gives by means of (2) and (6) 

F l l ( p A q ) + l  (1 p V 1  q ) + l l p A 1 1 4 .  

(10) 1 11 ($I A Q) -+ 11 23 A 11 4. 

The inverse formula is also true: 

(11) k 11 P A 11 -+ 11 (?, A Q). 

For it is clear from the above interpretation of the logical connectives 
t h a t 1 1  ( p A Q ) A p - f i q ;  then a l s o k i  ( p A Q ) A l l Q + l p .  
So, if 7 1 p A 1-1 q is given, the hypothesis i ( p  A q) would 
lead to 1 p ,  which is contradictory with the given ii p .  
It is easy to see that 

(12) ~ l l ( P V l l ~ - f ~ ~  (pvq), 

but the inverse implication does not hold because of the strong 
interpretation of v. 

7.1.3. A formal system 

The intuitionistic propositional calculus has been developed [A. 
Heyting 19301 as a formal system with A ,  v, +, i as undefined 
constants, and on the basis of the following axioms 

I. 
11. 
111. 
IV. 
V. 
VI  . 
VII. 
VIII. 
IX. 

I- 2, -+ (P A 24- 
t- (P A Q) + (a A 24. 
t- (u -f d + ( ( P A  4 + (a A TI). 

t- ((P -f a)  A (a -+ 4 )  + (P + d .  
F- a + (P -+ a). 
k (P A (P -+ 9)) + Q. 

p --f ( p  v 9). 

k (v v a)  + (4  v PI. 

k ((2, + 4 A (a + 

X. I-1 P+ (?,+a)- 
t- ((P + a)  A (P + 1 a) )  + 1 P 

+ ((P v a)  -+ r ) .  

XI. 

The rules of deduction are the usual ones from the classical propo- 
sitional calculus. 
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Axiom X may not seem intuitively clear. As a matter of fact, 
it adds to the precision of the definition of implication. You 
remember that 9 + q can be asserted if and only if we possess a 
construction which, joined to the construction p ,  would prove q. 
Now suppose that i p ,  that is, we have deduced a contra- 
diction from the supposition that p were carried out. Then, in a 
sense, this can be considered as a construction, which, joined to a 
proof of 4 (which cannot exist) leads to a proof of q. 1 shall interpret 
the implication in this wider sense. 

A system of intuitionistic logic in which -+ is interpreted in the 
narrower sense and in which, accordingly, X is rejected as an 
axiom, has been developed by Johansson in his ‘‘minimal calculus7) 
[I. Johansson 19361. 

It must be remembered that no formal system can be proved 
to represent adequately an intuitionistic theory. There always 
remains a residue of ambiguity in the interpretation of the signs, 
and it can never be proved with mathematical rigour that the 
system of axioms really embraces every valid method of proof. 

7.2. The first order predicate calculus 

7.2.1. Interpretation of the quantifiers 

Let p(x) be a predicate of one variable x, this variable ranging 
over a given mathematical species Q .  Then (vx)p(z) means 
that p(x) is true for every x in Q ;  in other words, we possess a 
general method of construction which, if any element a of Q is 
chosen, yields by specialization the construction p(a). In the case 
that Q is a spread-species, we must be able to effect the construction 
@(x) for every ips x in Q ;  in the proof of the fan-theorem we 
saw that this is a very strong interpretation of the generalizing 
quantifier. The existential quantifier will also be interpreted in a 
strong way. (gx)p(x) will be true if and only if an element a of Q 
for which p(a) is true has actually been constructed. 

The introduction of predicates with more than one argument 
presents no difficulty. A formula of the first order predicate calculus, 
which contains propositional and predicate variables, can be 
asserted if it is true for every substitution of propositions and 
predicates for these variables. A simple formalization of the 
intuitionistic predicate calculus is obtained by adjoining to the 


