CHAPTER 15
INTUITIONISM

131. INTRODUCTION

Intuitionism, though it was anticipated by Kant and, in recent
times, by mathematicians such as L. Kronecker and H. Poincaré,
was not developed in a systematic and consistent manner before
the work of Brouwer and his school. It constitutes a tendency of its
own within the vast domain of research into the foundations of
mathematics and should be approached as such, if it is to be properly
understood. This may be illustrated by quoting some of its most
important and distinctive maxims.

(1) Tt is not possible to penetrate the foundations of mathematics
without paying attention to the conditions under which the mental
activity proper to mathematicians takes place.

(2) Research which does not give proper attention to this side of
the problem is unable to reveal the essence of mathematical thinking;
it can give information only as to its external appearance.

[It may be recalled that Frege, on the contrary, insisted that we
have no chance of approaching the essence of mathematics as long as
we indulge in psychological speculations about mathematical thinking. |

(3) Not only is research into the foundations of mathematics
often inspired by false conceptions of mathematical entities and
mathematical activity; but the same is also true for much mathe-
matical research in the ordinary sense of the word.

Consequently, research into the foundations of mathematics cannot
take existing mathematical theories for granted and restrict itself to
the provision of a suitable foundation for these theories; it must
submit these theories to a penetrating criticism.

(4) Mathematics should be developed independently of any
preconceived ideas of the nature of the mathematical entities or of
mathematical activity. Mathematical theories which depend essenti-
ally upon such preconceived ideas cannot sustain intuitionistic
criticism.

409
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(5) Mathematics is independent of logic, logic itself being dependent
upon mathematical thinking. The currently accepted principles of
logic do not deserve the unrestrained confidence usually given to them.

In the following sections we shall explain the far-reaching impli-
cations of these methodological principles as set forth by Brouwer
and his followers.

132. INtuitioNIsTIC CRITICISM OF CURRENT MATHEMATIOS AND OF
THE CURRENTLY ACCEPTED METHODS FOR RESEARCH INTO ITS
FouNpaTIONS

Already in his thesis for the doctor’s degree (1907) Brouwer sub-
mitted to a penetrating criticism (1) the axiomatisation of mathe-
matics, (2) Cantor’s theory of sets, (3) symbolic logic as developed
by Peano and Russell, and (4) Hilbert’s ideas concerning the foun-
dations of mathematics.

It should be borne in mind that, at the date of the publication of
Brouwer’s thesis, these doctrines had not yet obtained their present
form. On the other hand, Brouwer himself did not at that time realise
all the implications of his own views. Nevertheless, he shows a deep
insight into many essential features of the doctrines which he rejects;
moreover, the ideas which he expounded in his thesis are deserving
of special attention as they form the historical background to the
later development of intuitionistic mathematics.

(1) Axiomaticians are reproached with establishing merely verbal
edifices without paying due attention to the construction of a cor-
responding system of mathematical entities. Moreover, they are
charged with inconsistency in that they falsely accept the consistency
of an axiom system as a guarantee of the existence of a system of
mathematical entities fulfilling the axioms, while at the same time
they appeal to the existence of intuitively constructed systems of
mathematical entities in their proofs of consistency.

(2) Set theory as expounded by Cantor and Zermelo is practically
entirely rejected by Brouwer. He accepts neither the theorem of
Bernstein—Schréder, nor the axiom of choice and the well-ordering
theorem based on it. Later he developed a theory of sets on in-
tuitionistic lines; this theory will be explained later in this chapter.

(3) With regard to symbolic logic, Brouwer’s opinion is that it
can teach us nothing about mathematics, as it is condemned to
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remain for ever separate from mathematics. It is only a faithful,
mechanical, stenographic imitation of mathematical language; this
language itself. as a matter of fact, does not belong to mathematics
proper; it is nothing more than an imperfect tool, used by mathe-
maticians to communicate their results and to render them more
easily retained. Logic, traditional as well as symbolic, is an empirical
gcience, belonging rather to ethnography than to psychology.

(4) In his criticism of Hilbert’s ideas, Brouwer gives a striking
description of the successive stages in the formalisation of mathe-
matics. He enumerates: (i) the construction of intuitive systems of
mathematical entities; (ij) the verbal parallel of mathematical thinking,
that is, mathematical language; (iij) the mathematical analysis of
this language; this activity leads to the discovery of verbal edifices
established in accordance with the principles of logic; (iv) the step
of abstracting from the meaning of the elements which constitute
these verbal edifices; the abstract systems thus obtained are considered
to be mathematical systems of the second order; they are identical
with the formal systems studied by symbolic logic; (v) the intro-
duction of the language of symbolic logic which accompanies logical
constructions; this stage is found in the works of Peano and Russell;
(vi) the mathematical analysis of the language of logicians; this
stage, initiated by Hilbert, had been neglected by Peano and Russell;
(vij) the step of abstracting ... ete. — According to Brouwer, mathe-
maties is only to be found in the first stage of the process; the second
stage in unavoidable from a practical point of view; the later stages
are of a derivative character.

In this analysis of the process of formalisation we find a strikingly
clear insight into the necessity of a separation between mathematics
and metamathematics. This insight was gained by Hilbert gradually
in the period between 1900 and 1923.

133. ExISTENCE AND CONSISTENCY

Brouwer’s remarks concerning the subreptive character of the
transition from the formal consistency of a set of axioms to the
existence of a corresponding mathematical system admit a striking
illustration from the discovery of axiom sets which can be shown
to be formally consistent and which nevertheless cannot have a
standard model. We have already discussed various examples of
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such a situation, but it is worth while briefly to consider still another
case.

Let us take the full Dedekind-Peano set as described in Section
51 and let us add the axiom schema (QO) as introduced in Section 97.
It is easy to show by essentially the same argument as has been used
in Section 97 that the resulting axiom set B is still formally consistent.

This proof of formal consistency is certainly conclusive from an
intuitionistic point of view. And, from an intuitionistic point of view,
it is also clear that the axiom set B cannot have a model [N, f, e, A].

On the other hand, our example shows that, contrary to Brouwer’s
opinion, in some cases a proof of formal consistency can be given
which does not involve the construction of a model for the axiom
set under consideration. Indeed, our argument can be summed up
as follows: (i) every finite subset B® of B has a model [N, f, e, A];
(ij) it follows that every finite subset B® of B is formally consistent;
(iij) hence the set B itself must be formally consistent.

From a semantic point of view, our example proves that the predi-
cate logic of higher order is incomplete: from the fact that a set of
formulas from higher order logic has no model it does not follow that
this set is formally inconsistent. — Leon Henkin (1950) has shown
that, in a weaker sense, higher order logic can be proved to be complete
(¢f. Section 184). The notion of a model has to be extended; models
in the ordinary sense are called standard models. It can then be proved
that a set of formulas of higher order logic has a model, if and only
if it is formally consistent. A similar result is implicitly contained
in Mostowski’s paper on absolute properties (1947). Its implications
which respect to Brouwer’s observations were pointed out in my
Fondements logiques des mathématiques (1950).

134. LoGIc AND MATHEMATICS

On the basis of his schematisation of the constitution of formalised
mathematics, Brouwer states that logic introduces itself only at the
stages: (ij) creation of a mathematical language, and (iij) mathe-
matical analysis of this language. According to Brouwer, however,
these stages arise only out of practical needs; they do not represent
any essential features of mathematical thinking. It follows that
intuitive mathematics — stage (i) — i3 completely independent of
logic. On the other hand, mathematical language, and hence logic
also, is wholly dependent on the needs of intuitive mathematical
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thinking, to which, therefore, it must adapt itself as closely as possible.
For this reason Brouwer fiercely contests what he calls “the illusion
of the liberty of logic”. So his conceptions are the exact opposite of
the opinion of Carnap, who, in his “tolerance principle”, gave a
classical statement of the creed of the adherents to the unrestricted
liberty of logic.

It will be clear from the preceding section that in modern formal-
isations of mathematics there is indeed a strong tendency to adapt
logic as closely as possible to the needs of mathematics. The intro-
duction of a new rule of inference to eliminate, as far as possible,
the emergence of non-standard models for deductive theories may be
interpreted as a symptom of this tendency.

Of course, there is an opposing tendency as well, which manifests
itself in the construction of logical systems which, in one sense or
another, diverge from ‘“‘normal’ logic.

However, in most cases, these systems are not meant actually to
supersede ‘normal”’ logic; their construction is intended rather to
provide a better insight into the foundations of logic. In some cases,
it even serves the purpose of adapting logic better to the needs of
mathematical reasoning.

So Brouwer’s rejection of the liberty of logic does not, in itself,
conflict as strongly with the general trend in the study of formalised
mathematics as it might appear to do. There are, however, more
radical implications of his conceptions which give Brouwer’s in-
tuitionism an isolated position in modern foundational research in
mathematics.

135. Tuae PrINCIPLE OF THE ExcLUDED THIRD

One of the most spectacular features in Brouwer’s intuitionism is,
of course, his rejection of the unrestricted application of the principle
of the excluded third in mathematical reasoning. In order to give a
reliable account of the development of intuitionistic mathematics, it
will be necessary to give a full exposition of the reasons for this
radical step.

In 1900, Hilbert stated the principle of the essential solvability of
every mathematical problem. According to him, this principle
embodied a common conviction of all mathematicians; in this sense
the principle was again stated in 1906, by the philosopher Leonard
Nelson.
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Later, however, Hilbert came to realise that, with regard to form-
alised mathematics, the solvability principle, far from being the
expression of an obvious insight, constituted a serious and highly
interesting problem, which he called the deciston problem (‘“Ent-
scheidungsproblem”). and to which much research of fundamental
importance has been devoted in recent years (cf. Section 212). We
have seen that recent research has brought to light the existence of
mathematical problems unsolvable in an absolute sense.

According to Brouwer, the application of the principle of the
excluded third implies a tacit and, in general, unjustified appeal
to the solvability principle. In order to make his views completely
clear, it will be helpful to analyse some typical cases of the application
of the principle of the excluded third in mathematical reasoning on
the basis of a few preliminary remarks.

(1) In general, disjunction may be characterised by the following
rules of inference:

P a @ (b) PR Q@ —>R (©)
Pv@ PvQ (Pv@®) >R

However, if only these rules were given, disjunction as a logical
operation would be completely sterile. As a matter of fact, in order
to derive a conclusion E by applying the rules (a)-(c), we should
need, as premisses, one of the expressions P and ¢, as well as both
expressions P —~ R and @ — E. However, by means of the modus
ponens, B can be derived either from P and P — R, or from @ and
@ — R alone. The fertility of disjunction as a logical operation derives
from the fact that, in addition to the rules (a)—(c), we also, in many
cases, admit, without previous proof (that is, as axioms), expressions
having the form of a disjunction. The most important example is,
of course, the acceptance of the principle of the excluded third:

pvp (d),
which enables us to apply the secondary rule of inference:
P >R PR
R

(e)

The rule (e) is called a secondary rule because it can be reduced
to the rules (a)—(c) in combination with the principle (d).
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(2) Now let us consider a simple case of the application of this
rule of inference. Suppose that we want to prove:
7 divides
NZ=(Y+224 334 ... 409%9)2

if and only if 7 divides
N=1+22433+ ... +99%
The obvious way of proceeding is as follows:

(i) Suppose that 7 divides N. Then we have, for some k&, N=17-k,
N2=49.k2; so 7 divides N2

(ii) Suppose that 7 does not divide N. Then we have, for some
kand ¢: N=7-k+q, and ¢=1, or ¢=2, or g=3, or ¢g=4, or ¢g=5,
or ¢g=6. So we need only verify that 7 does not divide any of the
numbers 1, 4, 9, 16, 25, 36.

It will be clear that the rules (a)—(¢c) do not constitute a sufficient
basis for this argument. If we were to appeal only to these rules, it
would be necessary to derive explicitly one of the suppositions (i)
and (i), that is, to solve the problem whether 7 divides N or not.
This step can, however, be avoided by means of an appeal to principle
(d). Thus we may, with regard to our example, distinguish two
divergent attitudes.

(I) Rules (a)—(c) are adopted, but principle (d} is rejected. Then
our argument must be completed by means of an explicit solution
of the problem whether 7 divides N or not.

(IT) In addition to rules (a)-(c), principle (d) is admitted. Then
we need not go into the above-mentioned problem.

So the acceptance of principle (d) appears to imply that we take
for granted the existence of a solution to this problem; in other
words, the acceptance of principle (d) as a reliable starting-point
for mathematical reasoning implies the acceptance of the principle
of the essential solvability of every mathematical problem..

It will be clear that, besides the extreme attitudes described under
(I) and (IT), an intermediate attitude remains possible, namely

(ITI) Rules (a)-(c) are admitted, principle (d) is rejected, but,
instead of an explicit solution of the problem whether 7 divides &
or not, only sufficient evidence of the solvability of the problem is
demanded.
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In the present example, this attitude enables us to give a simple
proof. Indeed, it is possible to carry out the calculation of the number
N and then, by applying the division algorithm, to decide whether 7
divides N or not. It is certain in advance that we shall, in this manner,
obtain an explicit proof either for supposition (i) or for supposition (it).

(3) The attitude described under (I) fails to provide the basis for
a mathematical proof when we wish to prove theorems of a more
general nature, for instance:

Let p be any prime number, and N any natural number; then p
will divide &%, if and only if p divides N.

In this case, we cannot prove, in advance, either of the suppositions:

(i) p divides N;
(ii) p does not divide N.

Consequently, we are bound to adopt either attitude (IT) or attitude
(III). It will be clear that attitude (II) affords a basis for a proof.
As to attitude (III), we get a proof by observing that, for any given
values of p and N, we can decide whether (i) or (ii) is correct.

As a result of our discussion, we can state that, if attitude (III)
is adopted, we are justified in applying principle (d) in those cases
in which we are able to decide whether P or P holds good.

(4) In more complicated cases, neither attitude (I) nor attitude
(I1Y) affords a basis for a proof, even though attitude (IT) does afford
such a basis. For example, let us suppose that we want to prove:

For every real number a, there is a real number x, which satisfies
the equation;
(1—a)-x—sin (1—a)=0.

The usual procedure would be as follows:

(i) Suppose that a=1, then we can take z=1.
(ii) Suppose that @1, then we can take x=sin (1-a)/(1—a).

Now if attitude (III) is adopted, we must complete this argument
by pointing out a method which, for any given real number a, enables
us to decide whether a=1 or a1,

However, we have no such method. Indeed, let a real number a
be defined as follows:
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If » is the smallest number k such that the kth digit d, in the decimal
representation of the real number (7 +e)*~¢ is the first in a sequence

of 100 digits, all equal to d;, then a=1— 1—(1)—; ; if there is no such number
n, then a=1.

By this definition a certain real number a is uniquely determined.
For, in order to obtain the mth digit in the decimal representation
of a, it is clearly sufficient to compute the first m + 100 digits in the
decimal representation of the real number (z+e¢)*~¢ On the other
hand, there is at present no method which would enable us to find
out whether a=1 or a+#1. So, if we persist in rejecting principle (d),
our argument breaks down.

It should be noted that, nevertheless, attitude (III) still allows
the provision of a proof, which is based on the obvious fact that the
function, defined by:

y= lim sin (1 -=z)/(1—2),
z—>a
is continuous for a=1.

However, this argument, also, breaks down if we now consider the

equation:

(1—a)-z—sin V1 —a=0.

(5) More involved situations of a similar nature arise when
quantifiers are introduced. Let us consider, for instance, the logical
principle:

(n)A(n) v (En)d(n) (f)

which we shall, for once, write as an infinite disjunction:

(n)Ar)v A(1)v A2)v ...v A(k) v ....

If we still adopt attitude (III), then the application of this principle
a8 a basis for mathematical proof will be justified only if, for a given
expression A(n), we have a method which enables us to single out
a member of the infinite disjunction which can be shown to hold good.

In certain cases such a method is indeed available. For instance,
let 4A(n) stand for the phrase:

the natural number n does not divide the number N defined under (2),
if n£N;
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obviously, by checking, for every prime number p< YN, whether or
not N is divisible by p, we obtain a mathematical proof for one of

the statements (n)A(n), A_(l), fT2), . A(—k),
(6) However, let us now take for A(n) the phrase:

the nth digit d, in the decimal representation of the real mumber
(7 +e)* ¢ i3 not the first of @ sequence of 100 digits, all equal to d,,;

then, obviously, the argument given in connection with the preceding
example can no longer be maintained.

Example. Discuss the second equation under (4), adopting attitude (I1I).

136. NoON-CoNSTRUCTIVE EXIstENCE PROOFS

Intuitionistic criticism dislocates many arguments which at first
glance may seem very simple and very safe. Let us consider, as an
example, the so-called least number principle:

Suppose that a natural number n is given which has the property E;
then there must also be a smallest number m having the property E.

Proof. We apply recursion on k to show that the principle holds
good for every property E and for every n<k.

(A) Suppose that a certain number n<1 has the property E.
Then clearly 1 has the property E and is the smallest number having
this property.

(B) Suppose that the principle holds good for every property X
and for every n=<k; we have to show that it holds good for every
property and for every n=<k-+1. So assume that a certain number
n<k+1 has the property E; we consider three cases.

(i) m=k+1, and £+ 1 is the smallest number having the property
E; in this case m=k+1;

(ij) m=k+1, but k+1 is not the smallest number having the
property E; then there is a number n<k+1 which has the property
E; this case reduces to case (ii]);

(iij) m<k+1, hence n=Fk; therefore, by the induction hypothesis
there is a smallest number m having the property E.

From an intuitionistic point of view, this argument is not con-
clusive. In fact, from this point of view, the validity of the least
number principle itself seems very doubtful, to say the least of it.
Let E be the following property of a natural number »: there is, in
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the decimal representation of the real number (7+e)*~¢ a sequence
of 100 —n digits all equal to each other. The natural number n=99
obviously has the property E. However, there is at present no method
at our disposal which enables us to answer the question whether
or not 99 is the smallest number having the property £ and, if not,
which is the smallest number having this property.

Therefore, .if interpreted in an intuitionistic sense, that is, in
accordance with attitude (ILI), the least number principle cannot be
considered to be satisfactorily established.

Example. Show that the least number principle holds good from an
intuitionistic point of view, whenever E is a decidable property.

137. TrcENIcAL COMPLICATIONS DERIVING FROM THE ACCEPTANCE
OF AN INTUuITIONISTIC CONCEPTION OF MATHEMATICAL PROOF

Even the treatment of comparatively elementary problems meets
with unexpected and considerable difficulties, when we adopt an
intuitionistic point of view.

We have already devoted a few words to the discussion of the
linear equation:

a-x+b=0
in the real field.

In classical mathematics, one would say: there are three cases to
be distinguished, namely:

(1) a@a=0, b#0; in this case, no real value of = can ever satisfy
the equation;

(i) a=0, b=0; in this case, any real value of x will satisfy the
equation;

(ili) @+#0; in this case, the real number —% will be the only real

value of x which satisfies the equation.

This manner of dealing with the problem is inadequate from an
intuitionistic point of view. This will be clear when the values of
the coefficients ¢ and b are chosen as follows:

if n is the smallest number & such that the kth digit d, in the decimal
representation of the real number (z+e)" ¢ is the first of a series of

100 digits, all equal to d;, then a= ﬁ; if no such number k should

exist, then a=0;
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if n is the smallest number k such that the kth digit d, in the
decimal representation of the real number (z—e)**¢ is the first of a

series of 100 digits, all equal to d,, then b= _ 1. no such number &

(—10)"’
should exist, then b=0.

There is at present no method which enables us to decide which
of the three cases (i), (ij), or (iij) is realised.

It should be noted that, in other cases, equations may behave
quite normally although their coefficients are defined in a similarly
complex manner. Let a'=a+1 and 8'=b+1 be the coefficients in
the equation

a -xz+b'=0.

This equation has a unique solution z, and we can immediately
state that:
101 90
~ 90 =rs — T01°
We meet with difficulties of a similar nature in elementary geometry.
It should be mentioned that these difficulties vanish when coeffi-
cients and variables are restricted to values in the field of real algebraic
numbers; in this manner, almost the whole of elementary geometry
can be protected against intuitionistic criticism (E. W. Beth, 1935).
This result is related to Tarski’s solution of the decision problem for
elementary algebra and geometry (1939).

138, TvHE THEORY OF CONTINUUM

Such examples as have been given in the preceding sections will
scarcely be sufficient to convince everyone of the intrinsic strength
of the intuitionistic attitude.

Let us consider, for instance, the point of view of a platonist, whom
we suppose to argue as follows:

My own ignorance in mathematics and my own incapacity to solve
certain mathematical problems force me to admit the existence of a
Supreme Intellect, for which no unsolvable problems can exist. To
this Supreme Intellect, the difficulties indicated by Brouwer do not
present themselves. So It will be aware which of the suppositions
(i)~(iii) of Section 137 is true.

Now let us suppose that some conclusion C follows from any of
these suppositions. Let us consider the three derivations starting from
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(i), (i), and (iii) and all yielding the conclusion C. The Supreme Intellect
knows which of the suppositions is true and therefore It also knows
which of the three derivations constitutes a valid proof. It must,
therefore, know the conclusion C to follow, by a conclusive derivation,
from a true statement and therefore It knows the conclusion C to
be true.

Now the disjunctive statement

(@a=0&b+#0)v(a=0 &b=0)va+#0

is in this situation. Therefore, though it is not considered a valid
theorem by intuitionists, it can safely be accepted as true.
What objections can the intuitionist raise against this argument?
Let us first observe that the platonist’s point of view is proof against
a reductio ad absurdum. Such a reductio would, indeed, lead to a proof
of the negation of the disjunctive statement discussed above, namely
of the statement

(@a#0vb=0) & (a#0vb+0) & a=0

This statement which is, of course, false can neither be proved in
intuitionistic nor in classical mathematics. It follows that the intuitio-
nist cannot appeal to a reductio ad absurdum.

However, he can retort as follows. The platonist’s argument depends
on the thesis of the existence of a Supreme Intellect. We need not
question the truth of this thesis. But it can scarcely be taken to
constitute a suitable basis for mathematical proof. So the argument
will be rejected by the intuitionist on the strength of his thesis that
mathematics should not depend on principles of a non-mathematical
nature.

The intuitionist has, however, no reason to restrict himself to so
purely negative an argument. If he wants to give conclusive evidence,
not for the exclusive tenability of the intuitionistic conception of
mathematics, but of its intrinsic importance, he can point to the
edifice of intuitionistic mathematics which has been built alongside
classical mathematics.

For, better than intuitionistic criticism of classical mathematics,
intuitionistic mathematics itself reveals the spirit behind intuitionism,
a spirit more anxious to construct than to demolish.

If we have given a somewhat detailed exposition of intuitionistic
criticism, it was in order to make intuitionistic mathematics more
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accessible, and to reveal some of the typical presuppositions under-
lying classical mathematics.

The central place in intuitionistic mathematics is occupied by the
theory of continuum. This theory is of a completely original character
on account of the introduction of the notion of an infinite sequence
of arbitrary choices.

I will set forth the elements of this theory in a simplified version,
given by A. Heyting in 1931 ; we shall restrict ourselves to an exposition
of the construction of the closed linear continuuam C(0, 1).

We start from the following arrangement of dual fractions:

07 17 %7 %, %7 %: %7 %) %7 ilfh 1367 .o

A real number is generated by assigning to every dual binary fraction,
encountered on going through this arrangement, one of the predicates
left and right. These predicates can be chosen in an arbitrary manner,
but the natural order in the system of rational numbers should be
respected ; that is, if some fraction f has been assigned the predicate
left, then every fraction smaller than f{ must be given the predicate
left as well, and if some fraction f’ has been assigned the predicate
right, then every fraction larger than f° must be given the predicate
right. At each stage in the assignment procedure, the predicate to be
assigned to one single fraction may be left indeterminate; as long as
this predicate has not been chosen, the predicate to be assigned to the
following fractions will be determined uniquely by the natural order
existing in the system of rational numbers.

For instance, if we leave indeterminate the predicate of the fraction
3. I am constrained to assign to 1 the predicate left, to $ the predicate
right. If I now decide to assign the predicate left to 3, then the choice
of the predicate to be assigned to § will be free; and so on.

Let us consider a few examples to illustrate the procedure.

(1) The predicate to be assigned to 1 is left indeterminate through-
out the process; then every fraction f< 4 will be given the predicate
left, and every fraction f'>} will be given the predicate right. The
real number which is generated in this manner will be called the real
number }.

(2) The fractions f<} are given the predicate left, the fractions
[">4% are given the predicate right. Except for the predicate assigned
to the fraction 1, this sequence of predicates coincides with the sequence
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described under (1). We say, in such a case, that the two sequences
generate the same real mumber; in our case, both sequences generate
the real number }.

(3) The fractions f<! are given the predicate left, the fractions
f'>1 are given the predicate right. This choice sequence generates
the real number §.

(¢) The fractions f such that f2<] are given the predicate left,
the fractions f’ such that f2>1 are given the predicate right. This
choice sequence generates the real number 1. 2.

We can now introduce arithmetical operations on real numbers.

(5) Multiplication of real numbers can be defined in the following
manner. Let @ and b be any real numbers. Suppose that the choice
sequence which generates the real number @ is already completed as
to the choice of the predicates for the binary fractions with denominator
< 2" the choice of one of these predicates being possibly left indeter-
minate; let us rather say, more briefly: the nth phase in generating the
real number a has been completed. Let the nth phase in generating the
real number b also be completed.

We assume that, in the first choice sequence, p/2" has been given
the predicate left, while (p+2)/2" has been given the predicate right.
Likewise, let in the second choice sequence ¢/2" have the predicate
left, while (g +2)/2" has the predicate right.

Now we introduce a third choice sequence by stating that, for
every n, p-q/2* will have the predicate left, while (p+2)-(g+ 2)/2*"
will have the predicate right.

We can easily show that, in this manner, a third real number ¢ is
generated. Indeed, the difference between p-¢/22# and (p + 2) - (¢ + 2)/227
amounts to (2p + 29 + 4)/227 < (3)" 2. It follows that all but at most one
of the binary fractions with denominator 2*-! have been assigned a
predicate. In other words: the (n-1)st phase in generating a certain
real number ¢ has been completed.

The real number ¢ will be called the product a-b of the real numbers
a and b.

(6) Tt is, of course, not possible to define arithmetical addition
within the closed linear continuum C(0, 1). We can however, in an
obvious manner, introduce the arithmetic mean of two real numbers.
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Example 1. Show that for the multiplication of real numbers, as defined
above, we have the associative law:

a-(b-c) = (a-b)-c.
Example 2. Discuss the introduction of the arithmetic mean of two real
numbers.

139. INTUITIONISTIC SET THEORY

In our general definition of the notion of a real number [belonging
to the closed linear continuum C(0, 1)], we have restricted the liberty
of choice only by introducing the condition that the natural order
among rational numbers must be respected. On the other hand we
have described in our examples (1)-(4), choice sequences in which
there remained no liberty of choice whatsoever. It will be clear that,
if we wish to be able to characterise a specific real number, such a
description of the corresponding choice sequences is indispensable.

There remains, of course, a third possibility: we may restrict the
liberty of choice by imposing on the choice sequences a certain con-
dition which, nevertheless, leaves open, at least in certain phases,
the choice of the predicates to be assigned to certain binary fractions.

A restrictive condition of this kind must be stated in such a manner
that, for each finite sequence of permissible choices, at least one
continuation of the sequence is permitted.

Suppose, for instance, that the choice of the predicates is restricted
by the condition that } must have the predicate left, while $ must
have the predicate right. This condition does not affect the liberty of
choice with regard to the predicates for the fractions %, &, i, i,
8, 8, 8, ...; it will be clear that this condition may be taken to consti-
tute a definition of a certain set of real numbers, namely, for the closed
interval C(4, 2).

Likewise, we can define the closed interval C(}, ) by stating the
condition that every binary fraction f<4 must have the predicate
left and that every binary fraction f' >} must have the predicate right.

If @ and b are arbitrary real numbers, then the closed interval
C(a, b) can be defined by stating that every binary fraction f/ which
in generating a has been given the predicate left must retain this
predicate, while every binary fraction f which in generating b has
been given the predicate right, must also retain this predicate.

It may be felt that the acceptance of the choice sequence as a
legitimate method of mathematical construction introduces into
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mathematics an element of subjectivity which has always been consi-
dered as utterly foreign to the field. However, this element of subjecti-
vity can be eliminated by taking into account, in mathematical
discussions, only those properties of real numbers and of sets of real
numbers which do not depend on the choice sequences by which real
numbers are actually generated but only on the specific conditions
which have been imposed upon these choice sequences.

(1) We shall now show that, whenever the sets § and § are
Brouwerian sets (or “spreads’), that is, sets of real numbers defined
by conditions €' and € of the kind which we have just described, their
union 8§ U 8’ will also be a Brouwerian set. We shall, in fact, state a
condition C” which is of the same kind and which constitutes a defi-
nition of the set SU §'.

Suppose that the nth phase in generating some real number x in-
tended to be in .§ U 8" has been completed. The choices of the predi-
cates must be either (i) in accordance with condition C, or (ij) in
accordance with condition C”, or (iij) in accordance with both condition
C and condition C”; in case (i), the (n+ 1)st choice must be made in
accordance with condition C'; in case (ij), in accordance with condition
C’; and in case (iij), either in accordance with condition C or in accor-
dance with condition C’; in any case, it will be possible to continue
the series.

(2) For the intersection S N S’ of two Brouwerian sets § and &',

and

(3) For the complement S of a Brouwerian set S, we cannot give
a similar argument. It follows that S N 8§’ and S cannot, in general,
be expected to constitute Brouwerian sets.

(4) The limitations inherent in set-theoretic operations on Brou
werian sets have led Brouwer to introduce, in addition to the notion
of a Brouwerian set (or spread), the notion of a species, which is
considerably larger and comes nearer to the classical conception of
a set or class. A species is characterised by a specific property of its
elements. Thus we can consider the species of the real numbers which
are elements of a given Brouwerian set §; the species of the real
numbers which are not elements of a given Brouwerian set; etc.

The complement of a species and both union and intersection of two
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species are species. Hence, the subspecies of a given set or species
(for instance, the closed linear continuum C(0, 1)) constitute a lattice.
However, they do not constitute, intuitionistically, a Boolean algebra.
Indeed, set-theoretic operations on species are also affected by compli-
cations which are unknown in classical mathematics; this is apparent
from the following theorem.

(5) Suppose that to every real number on the closed linear conti-
nuum C(0, 1) we have assigned one of the predicates » or v; let some
real number a on C(0, 1) have the predicate u; then every real number
b on C(0, 1) must have the predicate u.

Proof. Suppose that some real number b on C(0, 1) has the
predicate v; let m, be the arithmetic mean of @ and b; there will be
two cases:

(i) wm, has the predicate v; in this case, we take a,=a, b =m,;
(ij) m, has the predicate u; then we take a,=m,, b, =b.

By iterating this procedure, we clearly obtain a sequence of real
numbers a,, a,, .... @, ..., all having the predicate », and a sequence
of real numbers b,, b,, ..., b, ..., all having the predicate v.

Let us consider the kth phase in generating each of the numbers
@y, By i1, Oprg, oy Dy, Bryy, Byyp. ... It is easy to see that, except for
at most one predicate, the corresponding finite choice sequences
must agree. Hence we can define a real number m on C(0, 1) such
that, for every k, the kth phase in generating m presents exactly
those predicates as to which the above choice sequences happen to
agree.

Now let a real number » be generated as follows. We start choosing
the predicates in accordance with the choice sequence for m, but we
make the mental reservation that, in any phase, we shall have the
right to change over to the choice sequence either for the corresponding
number a, or for the corresponding number b,. Thus, throughout the
process of generating the real number », we can indefinitely postpone
the decision as to the predicate u or v to be assigned to ». But this is
clearly inconsistent with our supposition that to every real number
on (0, 1) one of the predicates » and v has already been assigned.

So we have refuted the supposition that some number b has the
predicate v; and it follows that every real number on C(0, 1) has
the predicate .
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(6) It follows that the complement S of a subspecies S of (0, 1)
can only exist in the trivial case that either S or S is empty.

140. BrouwEeRrR’s FUNDAMENTAL THEOREM oN FINITARY SPREADS

It will now be convenient to state spread laws in a slightly different
form (the spread laws discussed so far can be restated accordingly).

(1) The sequence of binary fractions is replaced by the sequence
of all non-negative integers:

0,12, ....p, ...,

and, instead of assigning to each binary fraction f a certain predicate
(or leaving it indeterminate), we assign to each non-negative integer
p a certain natural number n,. On account of a given spread law,
some choices for n, will be sterile; such a choice sterilises the choice
sequence n(p+1)=[ng, ny, ny, ..., n,], that is, it prevents its conti-
nuation and destroys the effect of the preceding non-sterile choices
Ny, By, Ny, ..., N,_y. However, if the sequence n(p +1) is not sterilised,
then at least one non-sterile choice for », ;, must be available; what
choices are available for =, , will, in general, depend upon the
preceding choices. We shall say that, by making a non-sterile choice
for n,,, we generate the sequence n(p-+2).

(2) Those infinite sequences n=[ngy, 7y, ..., %, ...] which are
generated in accordance with the spread law are the elements of a
species N, which is called a spread. "

The finite sequences n(p+1)=[n,, 7y, ..., n,] for p=0,1,2, ... are
called the tnitial segments of n.

(3) M=VE,, will be the species of all initial segments, sterile
P
or non-sterile.
M(m(9))= V B, [ng=mg, ny=my, ..., n,y=m,,] will be the species
P>q

of all initial segments n(p) which are extensions of a given initial
segment m(q).

The species N=E,[for any p, n(p) is non-sterile] coincides with
the spread N as defined above.

Nm(q))=E,[n € N, ng=mg, n,=my, ..., B, =m,,] is the species of
all elements n of N which have a given initial segment m(qg).
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It is easy to see that N(m(q)) is not only a subspecies, but even a
sub-spread, of .

(4) In this connection it should be pointed out that a spread N
can be empty. The spread N will be empty if and only if, already for
7y, no non-sterile choice is available. For, if some choice for n, is
non-sterile, then n(1l)=[n,] is not sterilised, and hence a non-sterile
choice for n; must be available, and so on.

(6) Now let us suppose we are given a function F which assigns,
to each element n of N, a natural number b= F(n) as its value. The
definition of such a function F must involve the description of a
certain algorithm which enables us to calculate, in a finite number
of steps, each of the values F(n). It will be clear that in such a cal-
culation only the choice of some initial segment n(p) of » can actually
play a réle; it follows that all elements =’ in N{n(p)) must yield the
same value F(n')= F(n).

This consideration suggests the introduction of the following
definitions, which are all relative to one particular spread N and to
one particular function F defined on N.

(6) M, will be the species of all initial segments m(g) such that
the algorithm provides the value F(n) for every = in N(m(q)) as soon
as n,=m, has been chosen, but not earlier.

M, will be the species of all initial segments n(p) which satisfy
one of the following conditions:

(i) =(p) is sterile;

(j) there is an initial segment m(g) such that n(p) is in M(m(q))
and m(q) is in M.

If n(p) is in M, then either N(n(p)) is empty, or F(n) has already
been decided by the choice of », for some ¢ < p; hence, for all elements
n' in N(n(p)), F(n') must take the value F(n).

M, will be the species of all initial segments n(p) such that, for
any n'(p’) in M(n(p)), we can find an initial segment »"(p”) which
satisfies the following conditions:

(i) =»’(p") is in M(n'(p"));

(ij) »"(p") is in M,

(7) Now suppose that, for some initial segment =n(p), we have a

proof of the assertion:
n(p) € M,
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Then it must be possible to state this proof in such a manner that
only the following schemes of derivation are applied:

@ (IT)
n'(p’) € M, [7'(p'), 1] € M,
'(p') € M, [#'(p"), 2] € M,

[We have introduced a new notation, writing “[n{p), n,]” instead
of “n(p+1)”.] Each assertion “n'(p’) € M,”’ appears at most once
as a premiss and at most once as a conclusion. Therefore, we may
apply the method of definition by transfinite recursion on the
derivation to introduce a decomposition of the sub-spread N(n(p))
of N into a well-ordered species S(n(p)) of sub-spreads N(m(q)) of N;
as follows:

(i) If »'(p’) is in M,, then S(»n'(p’)) will be {N(»n'(p"))};
(ij) If, for k=1, 2, ..., 8([»'(p'), k]) is given, then S(»n'(p’)) will
be the ordinal sum:

S([2'(p"), 1N +8([n'(p), 2D+ ... +8([n'(p"), kD) + ...

For each element N(m(q)) of S(n(p)), m(g) is in M,, and the union
of all these spreads N(m{g)) will be N(n(p)).

(8) Now the definition of the function F must be given in such a
manner that we are able to prove that the initial segment n(0) is
in M,. For, unless such a proof is given, we cannot be sure that the
value F(n) can be effectively calculated for each element n of N.

It follows that N(n(0))=XN is decomposable into a well-ordered
species S(n(0)) of sub-spreads N(m(q)), such that m(g) is in M, and
that in N(m(q)) the value of F is constant.

(9) On the other hand, a finitary spread N is characterised by
the fact that, for any non-sterilised initial segment =n(p), the non-
sterile choices available for », are finite in number. It follows then,
by transfinite recursion on the derivation, that §(n(0)) can only contain
a finite number of non-empty subspreads N(m(g)). Hence we can
effectively calculate the largest number z such that N(m(z)) is not
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empty. It follows that, for any element n of N, the value F(n) can
only depend upon the choice of the initial segment n(z).

(10) So we have Brouwer’s Fundamental Theorem on Finitary
Spreads (1923):

Suppose that on a finitary spread N a function F is defined, the
values F(n) of which are natural numbers; then there is a number z
such that, for any element n of N, the value F(n) depends only uwpon
the choice of the initial segment n(z).

(11) In an entirely similar manner, we can prove a theorem
which is slightly more general:

Suppose that a finitary spread N is covered by a denumerable sequence
of species Sy, Sy, ..., Sy, ... ; then there is a number z such that, for any
element n of N, there is a species S, in which n is contained and which
depends only wpon the choice of the imitial segment n(z).

(12) Returning to the functions F defined on a finitary spread N,
we can restrict ourselves to considering those functions F which
take only two different values, say, 0 and 2. It will be clear that
the species F,[F(n)=2] will constitute a denumerable Boolean
algebra. It would be interesting to know:

(i) in which manner the structure of this Boolean algebra B(N)
depends upon the choice of N;

(ij) under which conditions the Boolean algebras B(N) and
B(N’) corresponding to two different spreads &V and &' are isomorphic;

(iij) under which conditions a given denumerable Boolean algebra
is isomorphic to a Boolean algebra B(N).

Perhaps the work of J. C. E. Dekker (1953) will provide some
results in this direction.

(13) The species E,[F(n)=2] on a finitary spread N play, to
some extent, the role of open-closed subsets on a topological space T'.
Such a space T' is always of dimension 0, and it follows that such a
space as the closed linear continuum C(0, 1) cannot be obtained
directly as a finitary spread. Nevertheless, the construction of compact
topological spaces can be carried out starting from the construction
of suitable finitary spreads. An exhaustive treatment of this subject
has been given by H. Freudenthal (1937).
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(14) I have to restrict myself to restating our previous con-
struction of C(0, 1). We may write “1”, “2” and “3” instead of
“left”, “right”’, and “left indeterminate”. Then the sequence of
predicates obtained at completing the pth phase in generating a real
number @ on C(0, 1) is replaced by a sequence of (2°+1) numerals
“17, “2”, and “3”. Let n, be the natural number denoted by this
sequence of numerals. Then our description of the manner in which
the real number @ is generated may be restated in the form of an
instruction concerning the non-sterile choice of a number =, to extend
a non-sterilised initial segment n(p); this instruction may be construed
as a spread law, and this spread law defines a certain finitary spread N.
The actual wording of the spread law is not relevant.

(15) In order to conform to current usage, I adopt a terminology
which is slightly different from Brouwer’s. The elements of N will
be called gemerating elements (instead of poimts). Two generating
elements will be called congruent. if the corresponding sequences of
predicates agree except for at most one single predicate.

A species of mutually congruent generating elements will be called
a point (instead of a point nucleus), and the species of all points will
be the closed linear continuum C(0, 1).

The species E,[F(n)=2] on N will be called species of first order.
We observe that, for a point P on C(0, 1), there will, in general, be
an infinite species g(P) of generating elements in N.

(16) Now let us suppose that C(0, 1) is covered by a sequence
T, T, ...,Ty, ... of species. Will there always be a number z similar
to the one described under (11)?

Of course, it can be said that there must be a certain algorithm
which, for any point P and for any generating element » in g(P),
provides a number k£ and an initial segment n(p) such that P itself
as well as any point P’ which has a generating element »' in N(n(p))
is contained in 7. However, the number k¢ and the initial segment
n(p) may depend upon the element » in g(P) with which we start
and, moreover, if both » and »* are in g(P) then P’ may have a
generating element »’ in some N(n(p)) without having any generating
element in any spread N(n*(p*)). At this point, our previous argument
breaks down.

(17) However, let T be a subspecies of C(0, 1) which has the
following property: there is a corresponding subspecies S(T) of N
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such that, if P is in T, then g(P) is included in S(T'), and if P is not
in T, then g(P) is included in N —8(T'). Then T is called an open sub-
species of C(0, 1).

(18) On the basis of this definition, we can now prove the following
compactness theorem for the closed linear continuum C(0, 1):

Suppose that the closed linear continuum C(0, 1) is covered by a
sequence Ty, T, ..., Ty, ... Of open subspecies; then there is a number
z such that, for every point P on C(0, 1), there is a species T', in which
P 18 contained and which depends only on the choice of the initial segment
n(z) for an arbitrary generating element n in g(P).

(19) This result provides the background for the somewhat startling
theorem (5) in Section 139. Suppose we had covered C(0, 1) by two
disjoint species 7', and T, Then we could define two subspecies §;
and S, of N, as follows:

(1) mis in §,, if and only if we can find a point P on C(0, 1) such
that % is in ¢g(P) and P is in T;

(ij) = is in S,, if and only if we can find a point P on C(0, 1) such
that » is in g(P) and P is in T,

Now let » be any element of the spread N. The species of all
elements which are congruent with » determines a certain point P
on C(0, 1), and we know, of course, that n must be in g(P). Now if P
is in T, then = is in 8; and so is any other element in g(P), hence
g(P) is included in §,; moreover, no point P’ can be found such that
P’ is in T, and n, or any other element »’ in g(P), is in g(P’), so = is
in ¥—8, and ¢g(P) is included in ¥ —8,.

Similarly, if P is in 7, then » is in §, and in N —8,, and g(P) is
included both in 8§, and in N 4.

Moreover, C(0, 1) is covered by T, and T, so P must be either in
T, or in T,

It follows that both 7 and 7', must be open species. But it is known
in classical mathematics that, if C(0, 1) is covered by two disjoint
open point sets, then either of the two sets is empty.

(20) The fact that in intuitionistic mathematics a compactness
theorem such as theorem (18) can be proved is interesting. In classical
mathematics, many existence theorems are either themselves com-
pactness theorems or they depend upon compactness theorems. As
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an illustration we mention the theorems concerning the existence of
models for certain classes of deductive theories, which could be
interpreted as compactness theorems for certain topological spaces.
Another example is found in a result of J. L. Kelley (1950), according
to which Tychonoff’s theorem concerning the compactness of every
Cartesian product of compact topological spaces entails the axiom
of choice.

This close connection between compactness theorems and existence
theorems now turns out to subsist if from classical mathematics we
pass on to intuitionistic mathematics.

I shall later return to the discussion of certain critical points in
Brouwer’s proof of the Fundamental Theorem on Finitary Spreads.

But it will be clear by now that justice is not done to intuitionistic
mathematics when it is described as the fragment of classical mathe-
matics which results from the elimination of those elements which
do not sustain intuitionistic criticism. On the contrary, Brouwer has
introduced new and original methods, which have no counterpart —
or, at least, no obvious counterpart — in classical mathematics. After
Brouwer had laid the foundations of intuitionistic mathematics and
established its basic theories, the subject was further developed by
M. Belinfante (infinite progressions, 1929, 1930, 1938; functions of
a complex variable, 1938, 1941), J. G. Djkman (infinite progressions,
1946, 1948), H. Freudenthal (topology, 1936), A. Heyting (projective
geometry, 1925; algebra, 1943; theory of Hilbert space, 1951), B. de
Loor (theorem of d’Alembert, 1928), B. van Rootselaar (measure and
integration, 1954). Of course, we are not concerned here with these
developments, but rather with the foundations of intuitionistic
mathematics and with its connections with classical mathematics.

141. Heyring’s ForMaLisaTioN oF INrurrroNistic Loagrc (1930)

A systematic treatment of intuitionistic logic was given by Heyting
in the context of a formalisation of intuitionistic mathematics.
Previously, Brouwer (1925), A. N. Kolmogorov (1925), A. Khintchine
(1928), and V. Glivenko (1929) had alrcady studied various special
subjects in intuitionistic logic. Heyting’s vast enterprise was elicited
by the polemics of M. Barzin and A. Errera (1927-1933), and it gave
rise to a number of important publications.

It should, perhaps, be emphasised once again that, for an intuit-
ionist, no formalisation can constitute a foundation for intuitionistic
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mathematics; it can give no more than a basically inadequate image
of it. Hence the divergences existing between formalisations of
intuitionistic, and formalisations of classical, mathematics are only
of secondary importance ; the main difference is between the attitudes
adopted, by intuitionists and by adherents of classical mathematics,
in the interpretation of mathematical theories, whether formalised
or not. We shall see (in Sections 142 and 143) that even among
intuitionists there is no complete agreement as to the interpretation
of intuitionistic logic, as formalised by Heyting. However, such
differences of opinion do not constitute an objection to intuitionism;
they rather prove that a clarification has resulted from Heyting’s
work.

It is emphasised by Heyting that intuitionistic mathematics is not
dependent on the existence of logical principles of universal validity.
On the contrary, the validity of a logical principle must be ascertained
every time it is applied in a mathematical proof.

Nevertheless, Heyting begins his construction of a formalisation
for intuitionistic mathematics by enumerating a number of logical
theses which can be safely applied in intuitionistic mathematics; this
is done in order to retain, as far as possible, the analogy with extant
formalisations of classical mathematics. — Later, G. Gentzen (1934),
S. Jaskowski (1934), and others developed new methods which afford
more ‘‘natural” formalisations of deductive theories. These methods,
which give preference to inference schemes at the expense of logical
theses, allow us to make a comparison between intuitionistic and
classical logic in a very elegant manner; we shall return to this point
in Section 145.

We have already seen (in Section 135) that in intuitionistic logic
neither the principle of the excluded third:

(a) PVp

nor the thesis:

(b) ()a(x) v (Ex)a(z)

of classical logic can be accepted as universally valid principles. In
classical logic, we can derive (b) from (a) on account of the validity
of a third thesis:

() (z)a(x) — (Ex)a(z)
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which, however, also fails to be universally valid in intuitionistic
logic. Therefore, the theory of quantification in intuitionistic logic
presents complications unknown in classical logic. — (Of course, the
rejection of logical theses such as (a), (b), and (c) in intuitionistic
logic does not imply the acceptance of their negations as universally
valid; in fact, these negations are not even accepted as sometimes
valid.) —

On account of the peculiarities of intuitionistic logic, the elimination
of quantifiers, which must be effected in order to obtain solutions of
certain special cases of the decision problem, is not always permissible.
However, in those cases in which an effective solution holds classically,
this solution is sometimes also acceptable intuitionistically, and then
the necessary reductions receive a justification post factum.

For instance, Tarski’s solution of the decision problem for elementary
algebra and geometry (1938, 1948) is acceptable from an intuitionistic
point of view, provided only that the range of the variables be
restricted to algebraic real numbers. Independent of Tarski’s result,
the present author (1935) observed that this fact entails an intuition-
istic justification of the more elementary parts of geometry.

To conclude, T briefly mention a number of metalogical results
(some more are contained in the Examples at the end of Section 145).

Godel (1933) observed that the intuitionistic sentential calculus
cannot have a finite characteristic matrix. By Lindenbaum’s theorem
(cf- Section 88) it must at any rate have an infinite characteristic
matrix, and such a matrix was effectively constructed by S. Jaskowski
(1936). Moreover, Gidel conjectured a close connection between the
intuitionistic and the modal sentential calculi.

M. H. Stone (1937) and A. Tarski (1938) revealed connections
between the intuitionistic sentential calculus and the algebra of
closed (or open) subsets on topological spaces; a similar connection
was pointed out by J. C. C. McKinsey (1941) for the modal sentential
calculus, These results were given an algebraic form by McKinsey and
Tarski (1944, 1946, 1948); the connections between the intuitionistic
and the modal sentential calculi were at the same time solidly
established.

Mostowski (1948) and Henkin (1950) indicated means of extending
the algebraic methods developed by Tarski and McKinsey to intuit-
ionistic and modal predicate logic. Helena Rasiowa (1950) obtained,
for these systems, results analogous to the theorems of Liwenheim,
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Skolem, and Gédel for classical predicate logic; more work in this
direction has been done by Rasiowa (1951, 1952, 1954) and by
Rasiowa and Sikorski (1953, 1954). On the other hand, S. C. Kleene
(1945, 1948, 1952), D. Nelson (1944, 1947), and G. Rose (1952) applied
the theory of recursive functions to give an interpretation of intuit-
ionistic logic and mathematics. These investigations are somehow
connected with those discussed in Section 145, but they are less
closely connected with the fundamental conceptions underlying
intuitionistic mathematics.

Godel’'s work on intuitionistic arithmetic afforded a starting-
point for studies by D. van Dantzig and G. F. C. Griss, which will be
discussed in Section 142. It should be mentioned that the main ideas
underlying these studies have been stated independently by Bernays
at the Entretiens de Zurtch (1938, published 1941). In this connection,
I wish also to mention work by G. Mannoury (1925, 1943) and by
A. Reymond (1936) and, in particular, the construction by I.
Johansson (1936) of the minimal calculus, a system of sentential
calculus still weaker than the intuitionistic calculus, and having
rather peculiar metalogical properties.

142, Van DaNtz16’s STARLE AND AFFIRMATIVE MATHEMATICS (1942,
1947)— Griss’s NEGATIONLESS INTUITIONISTIC MATHEMATICS
(1944, 1946, 1950)

The principal aim of van Dantzig’s investigations is to fill the gap
which still exists between classical and intuitionistic mathematics. In
order to realise this purpose he applies two divergent methods.

(1) The first method consists in extending Godel’s result concer-
ning the connections between classical and intuitionistic arithmetic
to an essential and, if possible, extensive fragment of analysis. Since
we can, in classical analysis, distinguish a more elementary part,
which is independent of set theory — and especially of the axiom of
choice and of the continuum hypothesis —, and a more advanced
part, in which methods borrowed from set theory play an important
role, it seems reasonable to conjecture that Godel’s result still applies
to the more elementary part. Such an extension might even be expected
to result immediately when the formal procedure, mentioned above,
is applied to the theorems of elementary classical analysis. In this
manner, every theorem is replaced by a stable expression, that is,
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by an expression which is — classically as well as intuitionistically —
equivalent to its double negation; the classical proof of the original
theorem is replaced by an intuitionistic proof of its stable counterpart.

Simple and obvious though this procedure may appear, it meets
with a serious difficulty: in our proofs we must sometimes refer to
definitions. Now the definitions which are introduced in order to pass
from arithmetic to analysis (¢f. Sections 38—40) are not usually given
a stable form. Therefore, a revision of these definitions is indispensable;
such a revision has been carried out by van Dantzig for a number of
fundamental notions of elementary analysis.

We can characterise van Dantzig’s stable mathematics as an
attempt to develop a fragment of intuitionistic mathematics which
should reproduce literally an elementary fragment of classical analysis.

(2) The second method consists in the establishment of a fragment
of elementary classical analysis on the basis of suppositions as weak
and obvious as possible. Moreover, van Dantzig avoids the intro-
duction of those logical operators wich give rise to complications in
intuitionistic mathematics, namely, negation, disjunction and the
existential quantifier. In this respect van Dantzig’s affirmative
mathematics recalls similar attempts by Carnap (1934), Church
(1936), and Quine and Goodman. Van Dantzig himself quotes I.
Johannson (1936).

Though van Dantzig’s studies present many interesting features
and may be said, in fact, to constitute a valuable contribution to a
better understanding of the foundations of classical analysis, T do
not think that his methods can be expected to yield a reconstruction
of anything more than an elementary and logically weak part of
classical analysis.

While van Dantzig attempts to fill the gap between classical analysis
and extant intuitionistic mathematics, G. F. C. Griss (1944, 1946,
1950) presents a programme which is even more radical than Brouwer’s
views.

Not content with eliminating negation — the absence of which is
partly compensated by admitting, in addition to identity, distinctness
as an undefined relation —, Griss also rejects disjunction and the
introduction, in mathematical proofs, of suppositions not previously
realised (for a definition of distinctness, c¢f. p. 672).

The starting-point of negationless intuitionistic mathematics is



438 INTUITIONISM

the construction of the series of natural numbers; it is stated, as
intuitively obvious, that each natural number is distinct from every
preceding one. On the basis of this construction a comparatively
extensive part of extant intuitionistic mathematics can indeed be
reconstructed.

Of course, part of extant intuitionistic mathematics is absent in
Griss’s reconstruction and, for the remaining part, a thorough revision
is necessary. -

However, to the present author, Griss’s reconstruction seems not
to be satisfactory in all respects.

(1) Though, in general, the use of disjunction as a sentential
connective is not admitted, it is used in special contexts on the basis
of the following definition:

“a@ or b is true for all elements of the set V means that the property
a holds for a subspecies V' and the property b holds for a subspecies
V", V being the sum of V' and V".”

It seems to me that, in accordance with the conventions introduced
in Section 88, this definition should be read as follows:

“@ or b holds for all elements of the set ¥’ means that the con-
dition @ holds for all elements of a subspecies ¥’ and condition
b holds for all elements of a subspecies V", such that V is the sum
of V' and V”.

It seems clear that, although a and b are, at first, stated to
be sentences (assertions), they are actually used as conditions (or
sentential functions), containing some variable x ranging over the
elements of a certain species V. It follows that the definition presents
no real interest, as it only affords a method for defining the disjunction
of two sentential functions in terms of the sum or union of two sub-
species of a given species. Moreover, I feel that, from a constructive
point of view, there are certain objections to admitting addition of
species as an undefined operation.

For instance, I have suggested the following definitions of the
disjunction of sentences or sentential functions p and g¢:

PV @WERP >2#y) &lg—>2 #y)} >y # ),
and of the union of species 4 and B:
xe[AUBlo @)@{red >2z#y) &(zeB>2#y)} >y #x],;

However, according to P. C. Gilmore (1953), these definitions are
not suited to our purpose.
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(2) Griss rejects empty species, which again causes considerable
complications in the establishment of a calculus of species. Multipli-
cation of two given species is allowed only, if a common member of
these species has been constructed previously. Now this complication
is superfluous; it can be eliminated in the following manner. Suppose
that we wish to construct a calculus of species 4, B, C, ... of natural
numbers. Then, before constructing the series of natural numbers,
we first construct another element, say z, which, for the time being,
is held apart. The construction of the series of natural numbers is
then carried out.

We now introduce a species ¢’ which only contains the element z.
Moreover, we replace every species 4 of natural numbers which is
recognised by Griss by a species 4’, containing every natural number
in A and, also, the element z. Now we can, in dealing with the species
o', A, B, (", ..., apply multiplication without any restriction.

On the other hand, the resulting calculus of species is, obviously,
the calculus which we should have obtained if, besides the_ species
A, B, C, ... of natural numbers, an empty species had been introduced
from the beginning.

Negationless axiomatics has been studied, since the publication
of Griss’s first papers, by Paulette Destouches—Février (1947, 1948,
1949), R. de Bengy—-Puyvallée (1947), Nicole Dequoy (1949), P. G. J.
Vredenduin (1953), and P. C. Gilmore (1953).

143. BrouwrR’s CoMMENTS ON ESSENTIALLY NEGATIVE PREDICATES
(1948)

It is interesting to note that van Dantzig’s and Griss’s ideas, and
more especially their attempts to eliminate negation from intuitionistic
mathematics — this tendency probably derives from Mannoury’s
significs —, are not endorsed by Brouwer. As a matter of fact, the
creator of intuitionistic mathematics has shown, in a series of notes
(1948, 1949), that there are essentially negative predicates in intuit-
ionistic mathematies, that is, predicates which can hardly be expected
to be introduced without an appeal to negation; the following
illustrative example has been occasionally presented by Brouwer in
lectures and conferences since 1927. Let 4 be a mathematical assertion
which cannot be fested, that is, for which there is no recognised method
of deducing either its absurdity or the absurdity of its absurdity; for
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instance, 4 may be the assertion that, for some k, the kth digit in
the decimal representation of the real number n is the first in a
sequence of digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Then the creative subject
can, in connection with the assertion A, create an indefinite sequence
of rational numbers @, a,, @,, ..., in accordance with the following
instructions:

(i) When, up to the moment of choosing a,, neither the truth
nor the absurdity of the assertion 4 has become evident to the creative
subject, the choice will be a,=0.

(i1) When, between the choice of a,_; and a,, the creative subject
has obtained conclusive evidence for the truth of 4, then the sub-
sequent choices will be a,=a, ;= ... =a, ;= ... =27".

(iij) When, between the choice of @, ; and e, the creative sub-
ject has obtained conclusive evidence for the absurdity of 4, then the
subsequent choices will be a,=a =a ee =278

FRE Il sk

The sequence a,, a,, @4, ... is positively convergent, and hence
defines a real number a.

Now, if we had @> 0, then @ <0 would be absurd; so the absurdity
of the absurdity of 4 would have been established, hence 4 would
have been tested, contrary to our supposition. So ¢>0 cannot be
the case.

If we had a<0, then a>0 would be absurd; so the absurdity of
A would have been established, hence 4 would have been tested,
contrary to our supposition. So @< 0 also cannot be the case.

If we had a=0, then both a>0 and @ <0 would be excluded; so
both the absurdity of 4 and the absurdity of the absurdity of 4
would have been established. Henee the supposition that ¢ =0 implies
a formal contradiction; it follows that @ -<0.

Consequently, for the numbers @ and 0, we have a0, without
either >0 or a<0. As to the constructive order relations, which
are stronger, we also cannot have either @ «>> 0 or @ <. 0. So the predicate
+ seems to be essentially negative, that is, not definable in terms of
constructive predicates without an appeal to negation or absurdity.

If b= |a|, then we have b>0 without b .>0. So the predicate > is
also essentially negative. We shall not follow Brouwer in the further
development of this train of thought, but shall rather turn our
attention to van Dantzig’s reply (1949).

Van Dantzig observes that Brouwer’s terminology is not completely
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clear and lends itself both to an “objectivistic’” and to a “‘subjectivistic’
interpretation of his views; it is suggested — rightly, as it appears —
that a subjectivistic interpretation would be closer to Brouwer’s
intentions; however, the validity of Brouwer’s argument does not
depend upon the choice which we make between an objectivistic
and a subjectivistic interpretation.

What really matters is (a) the acceptance of absurdity as a basic
notion in intuitionistic mathematics, and (b) the absence, in intuit-
jonistic mathematics, of assertions which can be proved to be
incapable of decision.

Since Brouwer’s argument is based essentially on the acceptance
of the notion of absurdity, van Dantzig rightly observes that it
cannot prove anything against those attempts at a reconstruction
of intuitionistic mathematics which have been presented by Griss,
Paulette Destouches-Février, and by van Dantzig himself, and in
which the introduction of the notion of absurdity is systematically
avoided. On the contrary, this argument shows once again how
unclear the notion of absurdity is, and how desirable it is to avoid
its use. On the other hand, it must be granted that Brouwer’s argument
makes apparent the loss which a wholesale elimination of absurdity
from intuitionistic mathematics would entail.

The absence from intuitionistic mathematics of assertions which
can be proved to be incapable of decision makes it appear dubious
whether it will be possible, in the long run, to maintain the strict
distinction between formal systems and their metasystems against
Brouwer’s rejection of such a distinction. In this connection, the
following critical remarks seem apposite. First, there are not only
assertions incapable of decision in certain formal systems, there are
also problems essentially incapable of decision. The proofs of the
existence of such problems depend, as a matter of fact, on a distinction
between certain formal systems and their corresponding metasystems.
However, such a distinction seems unavoidable if reasonable standards
of formal rigour are accepted; we have seen, moreover, that Brouwer
himself, in his thesis, actually made a distinction of this nature. The
acceptance of a constructivistic attitude seems to me to be consistent
with a distinction between formal systems and their corresponding
metasystems.

It should, once again, be emphasised that this distinction is a
strict one, but by no means a rigid one. Suppose we are given a formal
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system S and a corresponding metasystem M ; then there is no objection
to the construction of a formal system S’ in which both § and M can
be interpreted. However, the metasystem M’ which corresponds to
the formal system S’ will be different from M. So the distinction
depends entirely on the choice of a domain to be formalised and sub-
jected to a metamathematical examination.

It may be added that the demand for a metamathematical analysis
of existing theories of intuitionistic mathematics, made by Church
(1939), seems completely justified; only such an analysis will be
able to clear up the status of essentially unsolvable mathematical
problems, as constructed by Church (1936), in relation to intuit-
ionistic mathematics, which allegedly cannot recognise the existence
of such problems.

144, INTUITIONISM AND SEMANTICS

It seems to me that the problems arising from the development
of intuitionistic, stable, affirmative, and negationless intuitionistic
mathematics would be very much clarified if a suitable adaptation
of the method of semantics, as introduced by Tarski, should prove
possible. I have already mentioned Kleene’s and Nelson’s application
of this method to the problem of interpreting intuitionistic arithmetic.

In connection with the eventual application of this method in a
logical analysis of intuitionistic set theory, I should mention an
objection made in conversation by van Dantzig and Freudenthal.
There are procedures, especially in the theory of finitary sets, which
appeal to notions belonging essentially to metamathematics; this
circumstance might turn out to render any attempt to effect a suitable
separation between mathematics and metamathematics illusory with
regard to this theory. Of course, the possibility of a semantical analysis
of intuitionistic set theory depends essentially on the success of such
an attempt.

In my opinion, however, there are sufficient reasons for not
renouncing too guickly the application of the methods of semantics
to a logical analysis of intuitionistic set theory.

(1) The method of the arithmetisation of metamathematics and
the logico-mathematical parallelism allow the association of a con-
siderable number of metamathematical notions and problems with
notions and problems of a strictly mathematical nature. Of course,
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it remains to be seen whether these devices can be adapted to cover
the notions and problems which present themselves in intuitionistic
set theory.

(2) It is possible to give a paraphrase of Brouwer’s so-called set
definition which is in complete agreement with the principles of
semantics. This paraphrase takes the form, not of a definition of the
notion of a set, but of a definition of the notion of a set definition
or a spread law.

“A spread law or set definition is an instruction according to
which, when we repeatedly choose an arbitrary natural number as
an tndex. each of these choices has as its predeterminate effect (which
may depend also on the preceding choices) that either a certain
figure (that is, either nothing or some mathematical entity) is generated
or the choice is sterilised. In the latter case the figures generated
so far are destroyed and generation of any further figures is prevented,
and hence every further choice will be likewise sterilised.

The only condition to be satisfied is that, after each non-sterilised
sequence of n—1>0 choices, at least one natural number must be
available which, if chosen as the »th index, effects the generation
of a figure.”

“The infinite sequences of figures generated in agreement with a
spread law on account of indefinitely proceeding sequences of choices
are, by virtue of this genesis, and together with any infinite sequences
identical with one of them, the elements of a species. Such a species
is called a spread.”

So every spread law or set definition may be given the following
symbolical form:

p
=M, P =M, (zy),
,
Oy =My (T0ry, Totg, oon, TO), Py = My a(vog, Ty, ..., Tog,).

The relation € between a spread and its elements may then be
defined as follows:

XeM ox eM, & (k)[ry,, € My, (), Ty, ..., X)],
PeM < (BX)X eM & (k){pr=Mxy, x5, ..., 1) }].
The following notation has been applied:
Zy, Xy, ..., Ty, ... are natural numbers;

X is the sequence z, %,, ..., X, -..;

3
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P1s Pas --+» Do --- Y€ “figures”;
P is the sequence py, Py, ..., P> -3

%, Ogy ---5 Oy, ... are sets of natural numbers;

tx is an element, arbitrarily chosen from x;

M, (2, %, ..., x,) is a function the values of which are sets of natural
numbers;

M (x,, xy, ..., %) is a function the values of which are “figures”.

So every spread is determined by two sequences M’ and M of
functions. Therefore, the question arises as to how these sequences
should be defined. It seems obvious that they should be defined in
terms of recursive procedures. I shall not go into this matter, which
has been investigated by Kleene (1950 and later).

145. SeMaNTIC CONSTRUCTION OF INTUITIONISTIC LOGIC

The considerations in the preceding Section go back to 1945; they
were published in 1947. Only recently, however, I have been able to
substantiate the claim which I made concerning the application of
the semantic method in an analysis of intuitionistic logic and mathe-
maties. In this Section, I wish to sum up my results on intuitionistic
elementary logic.

(xX)[AvB(x)]

Fie. 11

(1) Let us first consider a concrete example. The tree in fig. 11
clearly realises, in a sense to be analysed later, the sentence:

(a) ()[4 v B(x)],

both from a classical and from an intuitionistic point of view. Is it
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correct to say that, in the same sense, it also realises the sentence:
(b) Av (z)B(z)?

CrassicaLLy, we are inclined to answer in the affirmative. For
each branch in our tree represents a certain model of sentence (a),
and there are clearly two kinds of branches. The (infinitely many)
branches of the first kind represent models of the sentence 4. In
addition, there is one branch of a different kind, which represents a
model of the sentence (x)B(z). Therefore, every branch in our tree
represents a certain model of the sentence (b), in accordance with
the fact that the sequent:

(@)[4 v B(x)} |- A v (z) B(x)
is classically valid.

INTOTITONISTICALLY, on the other hand, we would argue as
follows. Suppose a subject is given the instruction to make, for
k=1,2, ..., a free choice between 4 and B(k). Once the subject has
chosen A, we lose interest in any further choices. It will be clear that
each choice sequence determines some branch in our tree and thus
realises the sentence (z){A Vv B(z)]. Nevertheless, we may forever
remain uncertain as to the decision between 4 and (x)B(z). For, if
our subject happens to choose B(1), B(2), ..., without committing
himself to continue in this manner, then neither 4 nor (z)B(x) is
ever “‘secured”’; and so it makes no sense to say that A v (x)B(x) is
realised.

Now, as observed in Section 139, the subjective element which is
brought into the situation by the introduction of choice sequences
can be eliminated if we agree to concentrate upon such properties
of choice sequences as appear after a finite number of choices. This
attitude implies, however, a radical change in the semantical notions.
The classical rules determine (in our present terminology) the validity
or non-validity of a formula on each branch separately; for this reason
they entail the above difficulties, which are at the bottom of the
divergences between classical and intuitionistic views. These difficulties
vanish, if we agree to determine validity or non-validity, not on
individual branches, but collectively on all those branches which
have a certain initial segment in common, that is, on a subtree.

Therefore, we shall study trees of a special kind, of which the
above one provides an example. With certain points of such a tree,
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we connect a formula or, more generally, a junctive. — For each
finite sequence of formulas X, X,, ..., X,, we introduce (following
R. Carnap, 1943) a conjunctive [X,, X,, ..., X;] and a disjunctive
{X,, X,, ..., X;}. We shall not always distinguish [X] and {X} from
each other or from X, but we must always distinguish [a] from {o},
where ¢ is the empty sequence. —

(2) We denote as a tree, every sextuple M= <8,0, P, R, f, F >,
formed by a set S (the elements p, g, ... of which are called points),
two special elements O and P of S (called, respectively, the origin
and the vertex of M), a relation B whose field is S, a function f which
with each point p on M associates a natural number f(p) as its rank,
and a function F which maps some subset §" of § on some other set,
such that:

(i) for every point p the set of all points ¢ with R(p, ¢) is finite;

(ij) for every point g0, there is exactly one point p with R(p, q);

(iij) f(O)=1; for 1=k<f(P), there is exactly one point p with
Hp)=k;

(iv) if R(p, ), then f(g)=f(p)+1.

In addition, we admit a zero-tree which does not contain any point.
~ If there is a largest number k which appears as rank of a point, then
k is called the length of M, and M is said to be of finite length.

We denote as a branch of the tree M, any maximal sequence of
points py, Py, ..., Pe_1s P> --- such that, for every subscript %k, we
have B(p,_y, p). — If there is a largest subscript %, then k is called
the length of the branch.

If p is a point on M, then the subtree M® will be the tree <S’, O, p,
B f, F'>, where §’ is the set of all points ¢ contained in some
branch of M which contains p, and where R’, f', and F" are, respectively,
the restrictions of R, f, and F to S'.

We shall say that M is the union of its (finitely many) subtrees
M',M", ... (or that M is decomposed into these subtrees), if § is the
union of the sets S, 8", ....

The trunk M, of length k& of M is the tree <8,,0, P', R, [, F'>
where §; is the set of all points p of rank f(p)<k, where P'=P if
f(P)<k and P’'=0 otherwise, and where R, f’, and F’ are the restric-
tions of R, f, and F to S,. As a construction of a tree M, we denote
every sequence of trunks M, of M, the lengths £ of which have an
upper bound k, if and only if k, is the length of M.
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We shall use a number of elementary theorems on trees which
are, however, so obvious that it is not necessary to prove or even
to state them.

(3) A semi-model M is a tree such that the values F(p) of the
function F are (formulas or) junctives. — We shall often say that
the (formula or) junctive F(p) is connected with the point p or appears
on the semi-model M.

A formula, X is said to be valid on the semi-model M (and M is said
to fulfil X), whenever one of the following conditions is satisfied:

(i) X is an atom and M is the union of finitely many subtrees
M® M%) M®" . such that with each of the vertices p, p’, p", ...
either X itself or some conjunctive in which X occurs is connected;

(ij) X is Y and Y is not valid on any subtree M’ of M;

(iij) X is Y &Z and both Y and Z are valid on M;

(iv) X is Y vZ and M is the union of finitely many subtrees on
each of which either Y or Z is valid;

(v) X is Y > Z and, whenever Y is valid on a subtree M’ of M,
Z is also valid on M’;

(vi) X is ()Y (x) and each of the formulas Y (1), Y(2), ... is valid
on M;

(vij) X is (Ex)Y(x) and M is the union of finitely many subtrees
on each of which some formula Y(k) is valid;

(viij) X is any formula and M is the zero-tree.

In accordance with this definition, the tree M in fig. 11 is a semi-
model, and it fulfils the formula (x)[4 v B(x)]. For, as shown in

Fre. 12
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fig. 12, M can be decomposed into four subtrees M® M®" M®"
and M®" such that, by (i), A[=F(p)=F(p’)= F(p")] is valid on
M® M®" and M*”, whereas, again by (i), B(3) [=F(p")] is valid
on M#", So, by (iv), 4 v B(3) is valid on M. As, likewise, 4 v B(1),
Av B(2), Av B4), ... are all valid on M, (x)[4 v B(x)] is valid on
M by (vi). On the other hand, it is easy to show that A4 v (z)B(z)
is not valid on M. —

A conjunctive [X;, X,, ..., X;] is said to be valid on a semi-model
M, whenever each of the formulas X;, X,, ..., X} is valid on M; and
a disjunctive {X,, X,, ..., X;;} is said to be valid on M, whenever M
is the union of finitely many subtrees, on each of which one of the
formulas X, X,, ..., X, is valid.

Theorem. If a formula or a junctive is valid on a semi-model
M, then it is valid on every subtree M’ of M.

Theorem. If a semi-model M is decomposed into a finite number
of subtrees M’, M”, ..., on all of which a certain formula or junctive
is valid, then that formula or junctive is also valid on M itself.

These theorems are easily proved by recursion on the construction
of a formula or junctive, using the fact that the intersection of two
subtrees of a given tree is either the zero-tree (if there is no branch
which contains the two vertices of the subtrees) or one of these sub-
trees (namely, the one whose vertex is of higher rank).

A semi-model M is called a model if it is not the zero-tree and if],
whenever a junctive or a formula is connected with a point p on M,
that junctive or formula is valid on the subtree M® of M.

Note that a formula X, if it is not an atom, may be valid on a
semi-model M, even though it does not appear on M. — The semi-
model M in fig. 11 clearly is a model.

(4) Let us agree to say that the sequent:
() U,Uss, ... Upn Vs, Vo ooty V

holds true (intuitionistically) if, whenever a model M fulfils the con-
junctive [U;, U,, ..., U,], it also fulfils the disjunctive {V,, V,, ..., V,.};
in other words: if every model M which fulfils all formulas U,,U,,..., U,
can be decomposed into finitely many submodels each of which
fulfils at least one of the formulas V,, V,, ..., V,.
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A model M is said to provide a counter-model to the sequent (f),
if it fulfils the conjunctive [U,, U,, ..., U, ] even though it does not
fulfil the disjunctive {V;, V,, ..., V,}.

The model in fig. 11 clearly provides a counter-model to the
sequent:

()[4 v B(z)]|- A v (x)B(x).

Essentially the same model was constructed by Mostowski (1948). —
We now consider the following set of rules.

G) K'\Z,K" %

K Y-LY K, YFLoe
@H?) <= (i) ——=
Y, KL KLY
K Y Z+-L . KFL YeKW-LZ
{)*) ——— (nj®)
Y&Z KL KLY &%, L
K.Y LeaKZ-L KR L Y, Z
(ive) (ivt) —————
YvZ, KL KL-YvZ L
K Y—>Z|LYedKZ Y->Z|L K,YLZ
(v®) (W)  —le——
Y->Z,K|-L KIY >Z
K, Y1), .., Yp,®Y)-L K |- Y(p)
(v]ll) vi? —_—
(@)Y (), K L K ()Y (2)
K . Yp)-L o KL Y(1), ..., Y(p), (Ex)Y
(viije) (P) |- (wijry KEL YD), ... Y(p), B)Y(z)
(Ex)Y(x), K - L K |- (Ex)Y (x), L

K\Z velKV\2Z,,..,2,2,
KVv2,2,...,2Z,

(viij)

These rules may be considered under various aspects.

(I} If read upside down, they show how in successive steps to
convert a given model of a certain conjunction into a model of a
certain disjunction. This point will be discussed under (6).
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(II) As they stand, they rather suggest a certain Calculus of
Sequents related to the Formal System F which we studied in Section
92; this point will be taken up under (5).

(III) 1If read upside down, the above rules may also be construed
as instructions for the construction of a semantic tableau. This point
I wish to discuss at once.

If we are interested in a certain sequent (f), then we start the
construction of a semantic tableau for (f) by inserting U,, U,, ..., U,
as initial formulas in the left column and V,, V,, ..., V, as initial
formulas in the right column. The development of the tableau is
carried out under the above rules (i)-(viij); the effect of an apph-
cation of each rule can be described as follows.

ad (i) This is the rule for the closure of a tableau.

ad (ij*) Rule (ij2) is as in the classical case, but with respect to
rule (ij?) there are two differences. In the first place, this rule can
only be applied, if the right column contains no other formulas
besides Y ; in the second place, after ¥ has been inserted in the left
column, the formula Y in the right column may be cancelled. —
After an application of rule (ij2), however, the formula Y in the left
column is not to be cancelled. This is not meant to make things more
difficult; on the contrary, we shall see that we sometimes must submit
a given formula to several applications of the same rule in order to
bring about the closure of a tableau or subtableau.

ad (iijb), (ive), (ve) As a result of an application of these rules, the
tableau splits up into two subtableaux, the closure of both of which
is required for the closure of the original tableau. For this reason we
shall say that the resulting subtableaux are conjunctively connected.

ad (vi®) and (vij?) As in the classical case, each application of
these rules demands the introduction of a “fresh” numeral.

ad (vi*) and (vij®) In these cases, all numerals hitherto introduced
must be used; the formulas (x)Y(z) and (Ex)Y(x), respectively, are
retained for further applications of the same rule.

ad (viij) In this case, the tableau splits up into two disjunctively
connected subtableaux, the closure of one of which is sufficient to
bring about the closure of the original tableau.

As an example, we construct the semantic tableau for the sequent:
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e Av A.
Valid (Not valid?)
Avd

4,4 (iv?)
A 4,4 (viij)
5 4 4,4 (viij)
i) : 4 - o A4 A4 (vii)
; : : , A 4,4 (viij)

a4 | e

It needs hardly saying that this tableau will never be closed; this
is in accordance with the fact that the sequent under consideration

does not hold true intuitionistically. — Let us also construct the
semantic tableau for the sequent:
o AvA.
Valid (Not valid?)
AvA
(i3%) AvA o
AvA (ij#)
4,4 (iv?)
o N A 4,4 (viij)
A A, A (viij)
G 4 o
Av A4 (ij*)
4,4 , (iv®)
- 4 A4 (vii)

In this case the tableau is closed, thanks to the possibility of
applying rule (ije) twice. The sequent under consideration indeed
holds true intuitionistically.

(5) As in the classical case, a closed semantic tablean for a
sequent (f) may be said to constitute a derivation of this sequent in
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a certain Formal System F,. Again it is possible to give this system
the shape of a regular System N or L of Gentzen type, and to show
the equivalence of the various systems thus obtained with other
extant formalisations of intuitionistic logic. In view of the explanations
contained in Section 92, it will not be necessary to go once more
into a detailed discussion of this matter.

(6) It is, however, highly significant that iv is also possible to
construe a semantic tableau as description of a tentative construction
of a mathematical character, the closure of the tableau announcing
the successful completion of the construction.

In order to prove that a certain sequent (f) holds true intuition-
istically, we have to point out, essentially, that there is a certain
method which enables us effectively to carry out the decomposition
of an arbitrary model M of all formulas U,, U,, ..., U,, into finitely
many submodels each of which fulfils one of the formulas V,, V,,..., V..
Inother words, we have to conveFt the given model Mof [U,, U,, ..., U,,]
into a model N of {V,, V,, ..., V,}. Each of the rules (i)~(viij) may
be taken to represent a certain step in the construction of N.

ad (i) In this case, the model N of {Z} may clearly be identified
with the given model M of [K’,Z, K"].

ad (ij*) Suppose we know how to convert a given model M, of
[K, Y] into a model N, of {L, Y}; let us take M as M, and let us
consider the resulting model N;. As N, fulfils {L, Y}, it can be
decomposed into two parts N, and N, which fulfil, respectively, {L}
and {¥}. But N; must also fulfil Y and so must be the zero-tree. It
follows that N, can be taken as N. — The discussion of rule (ij?)
follows similar lines.

ad (v2) Suppose we know how to convert a model M, of {K] into
a model N, of {L, Y} and to convert a model M, of [K, Z] into a model
N, of {L}; let M be a model of [Y - Z, K]. We take M as M, and
we decompose the resulting model N; into submodels N’ and N” of
{L} and Y, respectively. As N”, being part of M, fulfils ¥ — Z, it
fulfils Z. We now take N” as M,. Then clearly M is converted into
the union of N’ and N,, which both fulfil {L}. — The remaining cases
are treated likewise.

ad (viij) If a model M of [K] is to be converted into a model N
of {Z,,Z,, ..., Z;}, then clearly two methods are available. In the
first place, we may try to convert M into a model N, of {Z,} but we
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may also try to decompose M into finitely many subtrees M', M", ...
which can be converted, respectively, into subtrees N, N”, ... of N,
such that N, N”, ... are models of Z,, Z;, ..., Z;, or Z,.

As an illustration, let us first consider the above construction
for the sequent: (see fig. 13).

ol-4dvA.

(a) We wish to convert every model M of [g], that is, every model

M whatsoever, into a model N of 4 v 4; (b) it suffices to convert
every subtree M’ of M which fulfils A v 4 into a model of {0}, that
is, into the zero-tree; (c) this construction can be carried out by
converting M’ into a model of 4 v A4, or {4, 4}; (d) thus we try to
convert M’ either into a model of 4, or into a model of {4, 4}; (e) the
first approach does not meet with immediate success; (f) the second

(2]

etc.
Fic. 13
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approach demands that we convert M’ into a model of 4 or into a
model of {4, A }; (g) to convert M’ into a model of A, it is sufficient
to convert every subtree M” of M’ which fulfils 4 into the zero-tree;
(h) as Av A is valid on M’ and hence on its subtree M”, we resort
once again to steps (¢) and following; and now step (e) is found to
be successful. —

Our second example is concerned with the sequent:

o -AvA.

(4]

efc.

Fic. 14

In this case, the construction, as shown in the figure, is not success-
ful. However, the figure shows still more: the tree M which results
from the construction is clearly a counter-example to the sequent
under consideration.

One might anticipate a similar situation in all sach cases; that is,
one might expect the following completeness theorem for our Formal
System F,: whenever a sequent is not derivable in F,, then there is a
counter-model to it. However, such a completeness theorem is not
intuitionistically provable; but we are able to prove a statement
which is classically equivalent to it, though intuitionistically weaker.

(7) We suppose that the construction of semantic tableaux has
been suitably normalised; this can be achieved by adding the rule:
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K, Y+ L

(ix) e - (¢f Y 1s an atomic formula)

Y, K- L

and fixing a certain alternating order for the successive applications
of rules (ij)—(ix). Then the semantic tableau for a given sequent (f),
or O}~ D, is uniquely determined. As in Section 70, sub (1), and in
Section 92, sub (6), we consider nested strings 7" of subtableaux of 7',
with the understanding, however, that we make a choice only between
conjunctively connected subtableaux; if a tableau splits up into two
disjunctively connected subtableaux, then both subtableaux are
included in 7".

As shown in the above example, the tableau 7' can be represented
by an ordered couple <M, N> of semi-models; the ordered couple
<M, N> will be called the Herbrand field for the sequent C }- D
under consideration. To each string 7" in 7' there obviously corresponds
a certain ordered couple <M', N'> of semi-models. M’ is part of M
but not necessarily a subtree of M; likewise for N’ and N. We take
M=<8,0,0,R, f, F>, N=<8,0,0, R, {,G>, M=<§8,0,0
R, f,F>, and N'=<8',0,0, R, [, G>.

(8) As an introduction to our completeness proof, we shall first
prove the following

Lemma: Let M, N, M', and N’ be as above and suppose the cor-
responding string T in T not to contain a closure; let p be any point
in 8 then:

(A) F(p) is valid on M'"; and

(B) G(p) cannot be valid on M'®.

Consequently, M’ is a model and, specifically, M’ is a counter-model
to the sequent (f). —

Proof. We first observe that (A) is trivial if F(p) is [s] and
that (B) is trivial if G(p) is {o}.

Moreover, by the construction of 7', if an atomic formula X occurs
in F(p), then it also occurs in F(q) for every point ¢ on M'? with
H@)>f(p); and if an atomic formula X occurs in G{(p), then we can
find a point ¢ on M'® such that f(g)>f(p) and G(q)=X.

We consider the following statements:

(A If X occurs in F(p), then X is valid on M,

(B) If X occurs in G(p), then X cannot be valid on every subtree
M° of M@,
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(A" If X is the first formula in F(p), then X is valid on M'®;
(B") IfQ(p)is X, then X cannot be valid on every subtree MO of M.

In the first place, we prove (A”) and (B”) simultanuously by
recursion on the construction of X. We only consider those particular
cases which present a certain specific interest; the remaining cases
are simpler, but they are treated in essentially the same manner;
one may also compare the completely similar discussion under (4).

ad (i#) If the first formula X in F(p) is an atomic formula, then
it is clearly valid on M'®.

ad (i*) Let G(p) be an atomic formula X; now if X were valid
on every subtree M® of M'®, then clearly some closure would arise
in 7"; this contradicts the hypothesis of our Lemma, so X cannot
be valid on every subtree M° of M'™.

ad (ij2) Suppose that the first formula X in F(p) is ¥, whereas
the statements (A”) and (B”) hold true in regard to Y. In fig. 15,

Y

(*)

(%)
FiG. 15

we give a rough sketch of the structure of M'® and N, By our
supposition, ¥ cannot be valid on the subtrees marked (*) and, by
the construction of M’ and N’, such subtrees must arise for each
subtree M® of M'®; hence Y is valid on M'%®.

ad (iv®) Suppose that G(p), or X, is ¥ v Z, whereas in regard to Y
and Z the statements (A”) and (B”) hold true. In fig. 16, a rough
sketch is given of the structure of M'® and N'®; the same structure
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belongs, of course, to any relevant subtrees M® and N° It will be
clear that ¥ vZ cannot be valid on every subtree M® of M'%.

F1a. 16

ad (vij) Suppose that G(p), or X, is (Ez)Y (z), whereas in regard
to Y(1), ¥(2), ... the statements (A”) and (B”) hold true. In fig. 17,
we give a rough sketch of the structure of subtrees M® and N° of
M'® and N'® respectively. It follows clearly that (Ez)Y(x) cannot
be valid on every subtree M® of M'®. —

We may conclude that the statements (A”) and (B”) hold true for
every formula X. It is easy to see that, hence, the statements (A')
and (B’) also hold true for every formula X ; from this it follows that
also the statements (A) and (B) hold true. This completes the proof
of our Lemma; ¢f. the two Theorems on p. 448.
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(9) It will be convenient to adopt the following terminology.
The above semi-models M’ will be called approximate counter-models
to the sequent (f). An approximate counter-model M’ is said to be
of depth k, if and only if the upper part T, of 7" which corresponds
to the trunk M, of M’ contains a closure, whereas M,_, does not.
If no such k can be found, then M’ is said to be of infinite depth.

Then our above Lemma can be stated more briefly as follows:

Ij an approximate counter-model M’ to a sequent (f) is of infinite
depth, then M' is a counter-model to (f).

On the other hand, let an approximate counter-model M’ to the
sequent:

(f) C-D

be of depth k. Let M* be any model such that M} is exactly like M,
with the understanding, however, that those formulas (or junctives)
appearing on M, which have arisen from D, do not appear on M;.
It will be clear that:

The model M* fulfils the conjunctive C.

(10) We can now state the following classical version of our
completeness theorem for the Formal System F,:

For every sequent (f), exactly one of the following conditions is satisfied :
(1) The semantic tableau for (f) is closed, and hence (f) holds true
(sntustionistically) and s derivable in Fy;

(ij) T'he semantic tableau for (f) is not closed ; hence there is a counter-
model M’ to (f), and (f) is not derivable in F,.

Proof. It is been shown under (4)-(6) that, whenever the
semantic tableau for a sequent (f) is closed, (f) holds true and is
derivable in F,. The arguments used were also conclusive from an
intuitionistic point of view. —

Now let us consider all approximate counter-models M’ to (f).
There is either an upper bound b for all depths & of approximate
counter-models M’ to (f), or their is no such upper bound.

(i) If there is an upper bound b as above, then clearly the upper
part T, of each string 7", in the semantic tableau 7' for (f) must
contain a closure. It follows that the semantic tableau 7' is closed.



SEMANTIC CONSTRUCTION OF INTUITIONISTIC LOGIC 459

(ij) If there is no such upper bound then, by the tree theorem
(cf. Section 69), there must be an approximate counter-model M’ of
infinite depth. By our above Lemma, M’ is a counter-model to (f).

(11) From an intuititionistic point of view, the above argument
involves two objectionable steps. In the first place, we have started
by applying the principle of the excluded third; secondly, the tree
theorem is not available in intuitionistic mathematics.

We shall meet the first objection by giving a statement of the
completeness theorem which is intuitionistically weaker; this weaker
statement can then be proved by an argument which is a variant to
Brouwer’s proof of his Fundamental Theorem on Bounded Spreads
(cf. Section 140).

If a sequent:
) Cr+D

holds true intustionistically, then it is derivable in the Formal System F,.

Proof. Suppose that the sequent (f) holds true. This means,
intuitionistically, that we have an effective procedure which, whenever
a model M of C is given, converts it into a model N of D. The elementary
steps in such a procedure were summed up under (6).

(As these steps correspond to the steps in a formal derivation,
one might be inclined to consider our argument as trivial, or even
circular. However, such a reaction would not be justified. The given
procedure applies to models M individually, whereas a formal deri-
vation provides, so to speak, one uniform treatment for all models
M collectively. Our argument shows, essentially, that all individual
applications of the given procedure can be merged into one uniform
treatment.)

Actually, the procedure does not operate on a model M itself, but
rather on a certain trunk M, of it; a trunk M, of suitable length is
converted into a trunk N, of N. Therefore, the procedure also applies
to trunks M, which belong approximately, though not actually, to
models M of €. If the procedure fails to work, it is either because
M, is of insufficient length or because M, cannot be extended into a
‘model M of C.

(This does not imply the existence of a decision procedure. It
may happen that M, is converted into N,, even though it cannot be
extended into a model M of C.)
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As the procedure may be tentatively applied to every trunk M,
we see that there is a function b of trunks to natural numbers, such
that:

b(M,) =1, if the procedure transforms M, into N;

b(M,) =3, if the procedure fails because M, cannot be extended
into a model M of C;

b(M,)=5, if the procedure fails on account of the fact that M,
is not of sufficient length.

From this point on, we essentially duplicate Brouwer’s above-
mentioned proof. —

We shall not consider all possible trunks M,, but only those which
belong to approximate counter-models M'. We observe that the values
b(M,) of the function b must be (i) appropriate, (ij) justifiable, and
(iij) effectively computable for every argument value M.

ad (i) if b(M,)=1, then the transformation of M, into N, must
be effectively available; if b(M,)=3, then we must be able to find
out what is wrong with M’; and if b(M;)=>5, then by sufficiently
extending M, we must always finally arrive at some M; such that
b(M;)=1 or 3.

ad (ij) We now introduce a second function, ¢, as follows. If
b(M,)=1 and if the decomposition of M’ can be seen from M,, then
we take c(M,)=1. But if this is not the case, then we take c(M;)=2.

If 5(M;)=3, and if M, contains two points p and g such that ¢ is
on M'® apd that some formula X occurs both in F(p) and in G(g),
then we take c¢(M,)—3. But if this is not the case, then we take
(M) =4.

If b(M,)=5, then we take ¢(M,)=5.

ad (iij) Clearly the value of b or ¢ can only be directly found if
b(M,)=c(M,)=1 or 3. It all other cases, its computation will involve
reference to certain other values of these functions.

Now we consider the trunk M, which all approximate counter-
models M’ have in common, and we compute b(M;). Let r, be the
largest of all (finitely many) numbers k, such that some value b(M,)
or ¢(M,) is referred to in the computation of 5(M,). It is easy to see
that r, is an upper bound for the depth k of an approximate counter-
model M’. For suppose M’ to be of depth k> r,. Then clearly ¢(M;)=2,
4, or 5; it would follow that our computation of b(M;) was not justified.
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As 74 is an upper bound for the depth k of an approximate counter-
model M’ to (f), it follows by the argument in (10), under (i) that the
semantic tableau 7' for (f) must be closed. — This completes our proof.

(12) The above methods lead to simplified proofs of known results,
but they may also provide a starting-point for further investigations.

Although it is not possible here to go more deeply into these matters,
I wish to make a few remarks in connection with certain objections
to the intuitionistic version of the above completeness theorem;
it will not be necessary here to state these objections which have
been raised, from different viewpoints, by A. Heyting and by K.
Godel and G. Kreisel.

In my opinion, the difficulties are connected rather with the
statement of the completeness theorem than with its proof. The
hypothesis in the theorem can be restated as follows:

All models M’ which fulfil the conjunctive C also fulfil the disjunctive D.

However, we have not established a construction which yields the
totality of all these models M’ and to which the above hypothesis
can thus be construed to refer. Therefore, the above hypothesis
cannot be taken to have, in itself, a clear constructive meaning.

Instead of establishing a construction for the totality of all models
M’ under consideration, we have described, under (7), the construction
of a certain semi-model M which, in a sense, contains a representative
selection of models M’. But, besides these models M’, the semi-model
M also contains certain semi-models M” which are not models or
which do not fulfil the conjunctive C.

The semi-model M can be considered as a finitary spread, each
choice sequence in which is a model M’ or at least a semi-model M".
But in general we have no reason to expect that the models M’, in
which we are interested, will constitute a subspread M° of M.

Now a clear constructive meaning can be connected with quantifiers
ranging over all choice sequences in a given finitary spread (cf. Section
153) and, hence, it makes sense to replace a supposition concerning
all models M', which has no clear constructive meaning, by a sup-
position concerning all semi-models M” (including the models M').
In fact, the above intuitionistic proof depends essentially on u suitable
re-interpretation of the above-mentioned hypothesis. It needs hardly
saying that this re-interpretation implies a considerable strengthening
of the hypothesis.
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Example 1. Show that the sequent:
@) A(x) v (y) Bly) F (x)(y)[4(=) v By)]
holds true intuitionistically.

Example 2. Show that the sentences:

p—>p and (@)[4(x) v p] = {(=)A(z) v p}

are intuitionistic theses. — A sentence X is called an intuitionistic thesis, if
the sequent @ F X holds true intuitionistically.

Example 3. Show that the sentences:

pvp p~>p and (2)[(y){4(x) v B{y)} > {4(x) v (y) By}

are not intuitionistic theses; construct suitable counter-models.

Example 4. Show that Gentzen’s Hauptsatz and Teilformelnsatz carry
over to intuitionistic logie.

Example 5. Discuss the notions of proof from assumptions and of a
deductive system from the point of view of intuitionistic logic. Specifically, find
out what part of the results in Section 74 carries over if classical logic is replaced
by intuitionistic logic. — Hint: As axioms (I)~(VI) under (T 1) in Section 73
are intuitionistically valid, the same applies to the theses under (XI)-(XVI)
in Example 6. Thus the results under (1)—(10) in Section 74 carry over. Go more
carefully into the validity of part of the remaining results in that Section.

Example 6. Construct an intuitionistic counterpart to the System N in
Section 92.

Example 7. Complete the discussion under (6) by describing the con-
struction steps corresponding to the rules
{ij), (iije, ?), (ive, ?), (v?), (vi®, ?), and (vij?, ).
Example 8. We say that the construction of semantic tableaux is
normalised, if a rule is stated which, at each stage in the construction, uniquely

determines the next step to be carried out. Establish such a normalisation,
taking into account the remark in Section 92, sub (2).

Example 9. Complete the proof of the Lemma under (8) by treating the

cases (ije), dija, ¥), (ive), (v4, ?), (vis, ), and (vije).

Example 10. Give a more detailed discussion of the introduction of the
function ¢ in the above proof of our completeness theorem.

Example 11. Give a proof of our completeness theorem which is based
on the Fundamental Theorem on Finitary Spreads.
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