1 Smullyan’s Proof Rules page 54

We need the 8 rules of Propositional Logic - page 17, 20, 21.
We also use the α and β classification.

<table>
<thead>
<tr>
<th>Rule A</th>
<th>α</th>
<th>α_1</th>
<th>α_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α_1</td>
<td>α_2</td>
<td></td>
</tr>
<tr>
<td>$T(X \land Y)$</td>
<td>TX</td>
<td>TY</td>
<td></td>
</tr>
<tr>
<td>$F(X \lor Y)$</td>
<td>FX</td>
<td>FY</td>
<td></td>
</tr>
<tr>
<td>$F(X \Rightarrow Y)$</td>
<td>TX</td>
<td>FY</td>
<td></td>
</tr>
<tr>
<td>$T(\neg X)$</td>
<td>FX</td>
<td>FX</td>
<td></td>
</tr>
<tr>
<td>$F(\neg Y)$</td>
<td>TX</td>
<td>TX</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule B</th>
<th>β</th>
<th>β_1</th>
<th>β_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>β_1</td>
<td>β_2</td>
<td></td>
</tr>
<tr>
<td>$F(X \land Y)$</td>
<td>FX</td>
<td>FY</td>
<td></td>
</tr>
<tr>
<td>$T(X \lor Y)$</td>
<td>TX</td>
<td>TY</td>
<td></td>
</tr>
<tr>
<td>$T(X \Rightarrow Y)$</td>
<td>FX</td>
<td>TY</td>
<td></td>
</tr>
</tbody>
</table>
We add Rule C and Rule D - page 53

Rule C

\[
\frac{\gamma}{\gamma(a)}
\]

\(\gamma\) are *universal* type; \(\forall x.A, \sim \exists x.A\)

\[
\frac{T(\forall x.A)}{T A(a/x)} \quad \frac{F(\exists x.A)}{F A(a/x)}
\]

any parameter \(a\)

Rule D

\[
\frac{\delta}{\delta(a)}
\]

\(\delta\) are *existential* type; \(\exists x.A, \sim \forall x.\)

\[
\frac{T(\exists x.A)}{T A(a/x)}
\]

\(\text{new } a\)

\[
\frac{F(\forall x.A)}{F A(a/x)}
\]

\(\text{new } a\)

also see liberalized rule D - either \(a\) is never or has not been previously introduced by rule D. An example is given below in Proof 2.
2 Sample Proofs

\[\exists y (P(y) \Rightarrow \forall x. P(x)) \]

Example 2

Proof 1
p.56

(1) \[F (\exists y (\exists x. P(x) \Rightarrow P(y))) \] Strict rule D

(2) \[F \exists x. P(x) \Rightarrow P(a) \] \(a \) introduced by rule D from (1)

(3) \[T \exists x. P(x) \] \(F(X \Rightarrow Y) \) rule applied at (2) to give (3), (4) an \(\alpha \)-rule

(4) \[F P \ a \]

(5) \[T P \ b \] Line (5) is rule D on (3) new \(b \)

(6) \[F (\exists x. P(x) \Rightarrow P(b)) \] Strict rule D from (1)

(7) \[F P \ b \]
\[\# \ 5 \ & \ 7 \]

Proof 2
p.56

(1) \[F (\exists y. (\exists x. P(x) \Rightarrow P(y))) \] Rule D, use \(a \) just as in Proof 1

(2) \[F \exists x. P(x) \Rightarrow P(a) \] Conclusion of Rule D with \(a \) for \(y \)

(3) \[T \exists x. P(x) \]

(4) \[F P \ a \]

(5) \[T P \ a \]
\[\# \]
\[\# \ 5 \ & \ 7 \]

Liberal rule D with \(a \) from (3), allowed since the \(P(a) \) in \(F \ P(a) \) does not come from rule D, it is from \(F(X \Rightarrow Y) \) in line 2.
Challenge Example - Give justifications

(1) F \((\exists y (P(y) \Rightarrow \forall x. P(x))) \)

(2) F \((P(a) \Rightarrow \forall x. P(x)) \)

(3) T \(P(a) \)

(4) F \(\forall x. P(x) \)

(5) F \(P(a) \)

Rule D
3 Extended Proofs for Example 2

Proofs 1 and 2 of Example 2 page 55 bottom and 56 top, illustrating strict rule D:

(1) $F \left(\exists y (\exists x. P(x) \Rightarrow P(y)) \right)$

use strict rule D with new a.

Set the goal to attempt to falsify the formula. We can always assume that the domain of discourse is inhabited with at least one element. This proposition assumes a value for $\exists y$. We let $a \in D$ be that value and express this in step 2.

(2) $F \exists x. P(x) \Rightarrow P(a)$

To falsify (2) we use the propositional rule for $F(X \Rightarrow Y)$ from page 17. The conclusions are lines (3) and (4).

(3) $T \exists x. P(x)$

from (2) by $F (X \Rightarrow Y)$

(4) $F P a$

from (2) by $F (X \Rightarrow Y)$

(5) $T P b$

Now from line (3) $T \exists x. P(x)$, we use rule D $T \frac{\exists x. P(x)}{T P(b)}$.

(6) $F (\exists x. P(x) \Rightarrow P b)$

from (1) by strict rule D (note, the same form as (2) but with b new).

(7) $F P b$

5 & 7

(7) from (6) $F(\exists x P(x) \Rightarrow P(b))$ by $F(X \Rightarrow Y)$ but we don’t need to repeat $T \exists x. P(x)$, so we only show $F P(b)$ as line 7.

We can get a shorter proof by noting the $F P(a)$ in line 4 comes from $F (X \Rightarrow Y)$ not from rule D. We show that shorter proof below.
Proof 2

(1) F (∃y.(∃x.P(x) ⇒ P(y)))

Rule D, use a just as in Proof 1 apply rule C with a to get (2).

(2) F ∃x.P(x) ⇒ P(a)

Use F(X ⇒ Y) on (2).

(3) T ∃x.P(x)

from (2) by F (X ⇒ Y)

(4) F P a

from (2) by F (X ⇒ Y)

(5) T P a

from (3) since a was not introduced by Rule D in line 4, we can use a in rule D from 3.

Note:
There is an important lesson from Lect. 13 that I will mention now in retrospect. It is important for a proof to give clear justifications of every step because it is not clear from the sequence or tree of formulas.
(0) $F \left(\forall x. (Px \Rightarrow Qx) \right) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$

(1) $T \left(\forall x. (P(x) \Rightarrow R(x)) \right)$

(2) $F \left(\forall x. P(x) \Rightarrow \forall x Q(x) \right)$

(3) $T \forall x. P(x)$

(4) $F \forall x. Q(x)$

(5) $F Q(a)$ new a

(6) $T P(a)$

(7) $T \left(P(a) \Rightarrow Q(a) \right)$

(8) $F P(a) \quad \mid T Q(a)$
 # with 6 \quad \# with 5
4 Summarize Smullyan Completeness Argument and Consistency

Consistency p.53, proof page 55, one paragraph:

- G_1: If S is satisfiable and $\alpha \in S$, then $\{S, \alpha_1, \alpha_2\}$ is satisfiable.
- G_2: If S is satisfiable and $\beta \in S$, then at least one of $\{S, \beta_1\}, \{S, \beta_2\}$ is satisfiable.
- G_3: If S is satisfiable and $\gamma \in S$, then for every parameter a, $\{S, \gamma(a)\}$ is satisfiable.
- G_4: If S is satisfiable and $\delta \in S$, and a is a parameter not occurring in S, then $\{S, \delta(a)\}$ is satisfiable.

Consistency

| Lemma p.55 | Any immediate extension of a tableaux with at least one open branch, i.e. satisfiable branch, remains satisfiable. |
| Theorem p.55 | Thus if a tableau closes, then the goal is unsatisfiable, so G is valid. This it the same idea (plan) as for propositional logic consistency, provable implies valid. |

Completeness

| Theorem 3 p.60 | Theorem of completeness. |
| Theorem Löwenheim p.61 | If X is satisfiable, then it is satisfiable in a denumerable domain. |