Of the two ways in which the expression “A or B” is used, the first, which does not exclude the coexistence of A and B, is the more important, and we shall use the word “or” in this sense. Perhaps it is appropriate to distinguish between “or” and “either—or” by stipulating that only the latter shall have the secondary meaning of mutual exclusion. We can then translate

\[
\begin{array}{c}
A \\
B
\end{array}
\]

by “A or B”. Similarly,

\[
\begin{array}{c}
A \\
B \\
\Gamma
\end{array}
\]

has the meaning of “A or B or Γ”.

\[
\begin{array}{c}
A \\
B
\end{array}
\]

means

“\[
\begin{array}{c}
A \\
B
\end{array}
\]

is denied”,

or “The case in which both A and B are affirmed occurs”. The three possibilities that remained open for

\[
\begin{array}{c}
A \\
B
\end{array}
\]

are, however, excluded. Accordingly, we can translate

\[
\begin{array}{c}
A \\
B
\end{array}
\]

by “Both A and B are facts”. It is also easy to see that

\[
\begin{array}{c}
A \\
B \\
\Gamma
\end{array}
\]

can be rendered by “A and B and Γ”. If we want to represent in signs “Either A or B” with the secondary meaning of mutual exclusion, we must express

“\[
\begin{array}{c}
A \\
B
\end{array}
\]

and \[
\begin{array}{c}
A \\
B
\end{array}
\]

This yields

\[
\begin{array}{c}
A \\
B
\end{array}
\]

or also \[
\begin{array}{c}
A \\
B
\end{array}
\]

\[
\begin{array}{c}
A \\
B
\end{array}
\]