Derivation of a Fast Integer Square Root Algorithm

Christoph Kreitz
Department of Computer Science, Cornell-University, Ithaca, NY 14853-7501
kreitz@cs cormell edu

Abstract

In a constructive setting, the formula Vn3r r2<n A n<(r+1)2 specifies an algorithm for
computing the integer square root r of a natural number 2. A proof for this formula implicitly
contains an integer square root algorithm that mirrors the way in which the formula was proven
correct. In this note we describe the formal derivation of several integer square root algorithms
within the Nuprl proof development system and show how cfficient algorithms can be derived
using advanced induction schemes.

1 Deriving a Linear Algorithm

The standard approach to proving Vn3r r2<n A n<(r+1)? is induction on n, which will lead to
the following two proof goals

Base Case: prove Ir r2<0 A 0<(r+1)2
Induction Step: prove I r2<ni1 A nil<(r| 1)? assuming Jr, r2<n A n<(r | 1)%

The base case can be solved by choosing r = () and using standard arithmetical reasoning to
prove the resulting proof obligation 02<0 A 0<(0+1)2.

In the induction step, one has to analyze the root ry,. If (r,+1)2<n+1, then choosing r = r,+1
will solve the goal. Again, the proof obligation (r,| 1)?<nt1 A nt1<((r,41)+1)2 can be shown
by standard arithmetical reasoning. (r,11)2 > nt1, then one has to choose r — Tn and prove
72<n+1 A n+1<(r,+1)? using standard arithmetical reasoning.

Figure 1 shows the trace of a formal proof in the Nuprl system [CAB*86, ACE+00] that uses
exactly this line of argument. It initiates the induction by applying the library theorem

NatInd VP N—P (P(0) A (Vi N* P(i-1) = P(i))) = (Vi N P(i))

The base case is solved by assigning 0 to the existentially quantificd variable and using Nuprl's
autotactic (trivial standard reasoning) to deal with the remaining proof obligation. In the step
case (from i—1 to ¢) it analyzes the root r for 2—1, introduces a case distinction on (r+1)%<i and
then assigns either r or r+1, again using Nuprl's autotactic on the rest of the proof.

Nuprl is capable of extracting an algorithm from the formal proof, which then may be run within
Nuprl’s computation environment or be exported to other programming systems. The algorithm is
represented in Nuprl’s extended lambda calculus.

Depending on the formalization of the existential quantifier there are two kinds of algorithms
that may be extracted. 'In the standard formalization, where 3 is represented as a (dependent)

Va N JIr N r?<n<(r+)?
BY allR

n N
F3IrN r2<n<ir+)?
BY Natlnd 1

basecase
F3r N r2<0<(r+1)?
v BY existsR 101 THEN Auto

upcase.
i N*, r N r2<i-1<(r+1)?
F3r N x2<i<(r+1)?
BY Decide !(r+1)2<i' THEN Auto
Case 1
i N, r N £<i-1<(r+1)2 (r+1)2<i
Far N r?<i<(r+1)?
\/ BY existsR ir+1! THEN Auto-
Case 2
i Nt r N £2<i-1<(r+1)2 —((x+1)2< i)
F Ir N ri<ic<(r+1)?
v BY existsR ir! THEN Auto

Figure 1: Proof of the Specification Theorem using Standard Induction.

product type, the algorithm — shown on the left! -~ computes both the integer square root r of a
given natural number n and a proof term, which verifies that r is in fact the integer square root
of n. If 3 is represented as a set type, this verification information is dropped during extraction
and the algorithm shown on the right only performs the computation: of the integer square root.

let rec éq;t i let rec sqrt i
= if i=0 then <0 pf> = if i=0 then 0
else let <r,pfi—1> = sqrt (i-1) else let r = sqrt (i-1)
in in
if (r+1)?<n then <r+i pf> if (r+1)?<n then r+1
else <r.pf, > else r

Using standard conversion mechanisms, Nuprl can then transform the algorithm into any pro-
gramming language that supports recursive definition and export it to the corresponding program-
ming environment. As this makes little sense for algorithms containing proof terms, we only convert
the algorithm on the right. A conversion into SML, for instance, yields the following program.

fun sqrt n = if n=0 then 0 :
else let val r = sqrt (n-1)
in
if n<(r+1)°2 then r
else r+1
end

l'l'hé place holder;a pfr represent the actua.l proof terms that are irrelevant for the computation.

