A e

saatdl

Proofs as Programs

JOSEPH L. BATES and ROBERT L. CONSTABLE
Cornell University

The significant intellectual cost of programming is for problem solving and explaining, not for coding.
Yet programming systems offer mechanical assistance for the coding process exclusively. We illustrate
the use of an implemented program development system, called PRL (“pearl”), that provides
automated assistance with the difficult part. The problem and its explained solution are seen as
formal objects in a constructive logic of the data domains. These formal explanations can be executed
at various stages of completion. The most, incomplete explanations resemble applicative programs,
the most complete are formal proofs.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; 1.2.2 {Artificial Intelligence): Automatic Programming;
1.2.3 [Artificial Intelligence]: Deduction and Theorem Proving

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Automated logic, constructive logic, formal logic, intelligent
systems, program specification, program correctness, very high level programming languages

1. THE NATURE OF PROGRAMMING

The Setting

What is the difference between programming and mathematical problem solving?
To explore the question, consider this simple but real programming problem.!
Given an integer sequence of length n, [ay, . .., a.], write a program to find the
sum 329 a; of a consecutive subsequence [ap, Gp+1y -« -y Gpug] that is maximum
among all sums of consecutive subsequences [a;, Gis1, - .-, a;+x). Call such con-
secutive subsequences segments. For example, given (-3, 2, =5, 3, —1, 2] the
maximum segment sum is 4, achieved by segment (3, -1, 2]. When a problem
description refers to ordinary mathematical concepts such as integers, sequences,
and sums, we recognize it as a certain kind of mathematical problem, one
requiring an algorithmic solution. But there is at least one major difference

! This problem came to us from Jon Bentley (who encountered it while consulting) via David Gries.

This research was supported in part by National Science Foundation grant MCS-81-04018.

Authors’ address: Cornell University, Ithaca, NY 14853

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1985 ACM 0164-0925/85/0100-0113 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985. Pages 113-136

A RO e st i e T

114 . J. L. Bates and R. L. Constable

between programming and algorithmic mathematics.Z The solution to a program-
ming problem is a concrete program, a piece of code that can be executed by
some computer. So there is an element of formality in the result. As in good
mathematics, the problem must be solved exactly and rigorously, but in addition
the solution must conform to methods of expression completely determined in
advance by the programming language.

What is the intellectually difficult part of programming? Certainly, a great
deal of effort might be invested in learning a formal coding language in which to
code the problem, such as FORTRAN or ALGOL. A good deal of effort might be
invested in getting the particular piece of code to execute on a specific machine,
for example, typing, editing, submitting, and so on. The task may even require
mechanical assistance from diagnostic compilers, smart editors, and the like.
Nevertheless, in all but the most routine problems, the significant effort in
programming is problem solving, that is, in understanding the problem, analyzing
it, exploring possible solutions, writing notes about partial results, reading about
relevant methods, solving the subproblems, checking results, and eventually
assembling the final solution. During this process, almost no mechanical help is
available. Moreover, only a small part of the final assembly of notes and
explanations ever becomes part of the formal code.

How is the solution to a mathematical problem presented? It is often in the
form of a proof, which may be a sequence of equations or a sequence of lemmas
and previously proved theorems involving elaborate nonequational reasoning
such as induction and case analysis. The solution displays the result of the
problem-solving process in such a way that the difficult steps are explained and
exposed to public scrutiny. .

How is the solution to a programming problem presented? In extreme cases of
inadequate documentation the program may be presented raw, without explana-
tion. In that case. there is no trace in the final product of the intellectual effort
that went into producing it. More typically, the solution is presented as a program
plus imprecise documentation written in natural language (usually produced in
haste after the program has been written). This is especially bad because a good
explanation may be more important than the program, especially if the program
must later be modified or if it becomes critical to know its correctness. Yet the
task of reconstructing an explanation from the formal code or from the informal
comments is very difficult compared to the reverse process.

We are interested in finding ways to help the programmer carry out the most
difficult and important part of his task: solving the problem and explaining the
solution. We are interested in finding ways for computers to help produce and
subsequently use good explanations. To see how this might be done, let us
examine the sample problem further.

The first task is to make the problem specification precise. We introduce
necessary definitions. Given a sequence of integers of length n, say (ay, @,...,
a,], we say that a subsequence of the form [ai, Gi+1, - - - » Gisp) 18 2 SEEMeENt, that

* Some programming problems have a more explicit computational flavor which distinguishes them
even more from ordinary mathematics (e.g., find a maximum segment sum using at most O(n) steps
or using n processors concurrently). Other programming problems are distinguished by mention of
data types such as payroll files, which are not common to mathematical discourse.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

Prools as Programs - 115

is, a sublist of adjacent elements. A segment can be specified by giving the index
of its first member and then either the length or the index of its last member.
The task before us is to find a sum Y j*# a; that is maximum among all segment
sums.

We can now write the problem specification precisely in mathematical notation:
find M such that

q
M=max(lsk5q5n:2a,-).

j=k

Since the set over which we are computing the maximum is finite (otherwise the
maximum is not even a well-defined operation), the value M can be computed by
brute force; for example, just list-all segments, compute their sums, and take the
largest. In noncomputational mathematics one might proceed in this inefficient
way, but the essence of computer science is to compute well.

Confronted with a problem of the structure “for all n find a p such that A(p,
n)” there are really only a few tactics for solving it. One possibility is that the
construction of p and proof of A(p, n) is uniform in n, as in the example “for all
n find p such that p is not divisible by any y < n.” Here we take p=n!+1and
prove the proposition without regard for the structure of n. The possibilities for
such a uniform analysis depend heavily on which functions are available for
building p and the proof of A(p, n) directly.

Another possibility is that we proceed by induction of one form or another on
n. This is suggested whenever the answer p must be built in stages. Another
possibility in problems of this sort is that some property of A(n, p) can be
generalized to add an extra parameter, say A(m, n, p), and then we can use
induction on m. This technique is called generalization in Polya [29]; Dijkstra
[16), Gries [18], and Reynolds [32] call it weakening in the context of program-
ming.

Notice that the formal specification of the problem has suggested the methods
for solving it. Induction is suggested from among them because the problem can
be solved trivially for sequences of length one, and it seems likely that we can
decide uniformly how to solve it after adding one new element.? So suppose it
has been solved for sequences of length n, yielding sum M on the segment at i of
length p. Suppose now that we add a new element a,.,. Then the following
possibilities are exhaustive.

(1) The new maximum sum does not include a,.,.
(2) The new maximum sum does include a,.,.

How can we tell whether (1) or (2) holds? We cannot simply compare M with
M + an., because M may be the sum of a segment no longer contiguous with
an+1. We really must know how large a sum is possible from a segment ending at
n + 1 (i.e., how large a sum can be found by moving back into the sequence to

;Inithe context of a programming logic, we can consider the technique of while-induction and its
loop invariant as just another proof technique. See [14] for a treatment of this rule in the style of the
present paper.

ACM Transactions on Programming Langueges and Systems, Vol. 7, No. 1, January 1985.

AR 7 7 T

116 . J. L. Bates and R. L. Constable

form [a;, ..., Gas)- Call the maximum such sum L1 Knowing L.+, we can
take the new maximum sum to be max{M, Ln+1).

Suppose we try to compute Lp+1. Since we are proceeding inductively, we will
know L,. (Clearly, L, will be a,.) How to compute L, from L,? The value Ly
will be L, + an+ unless Ly + Gner = Qnss in which case we know that the
maximum segment sum including aa+ is simply [@n+1]. So the computation of
Lo+ is max(ansr, Ln + an+1). This analysis tells us precisely how to solve the
problem.

Insight was necessary to introduce the concept of L,41, but the structure of the
problem led us to realize that L, would be available. Moreover, the structure
focused our attention on a relatively simple subproblem of finding M for a
sequence of lengthn +1 (called M .1, given the sum for a sequence of length n
(say M.,).

These observations can be more compactly described in terms of properties of
the maximum operation. Notice that taking the maximum of a two-argument
function is equivalent to iterating the maximum operation on one-argument
functions, as follows:

(1) max(ls ksgsn:f(kq)= max(l < g < n: max(1 < k< q: f(k @)
To extend the range of the sum from n ton + 1, we have

(2) max(1sksgsn+1f(k q)) = max|{max(l < g < n: max(l < k = q: f(k,
7)), max(lsk=sn+ 1: f(k, n + 1))

Taking f(k, q) = X{., 8J» notice that max(l =g <n:max(lsk=gq: T a;))
=M,andmax(l<k=sn+1l T4 a;) = Lnyy. Thus the second equation says

that M,s, = max{M,, Lps}. In addition, since we know

n+l n
(3) max(l <k=zsn+1: 2 a;) = max{max(l <ksn Y aj+ a,,ﬂ), Bns1)s

j=k juk
and
n n
max(l <sk=n:) g+ a,.+1) = max(l <sk=sn: Y a,-) + Qn41y
=k e
it follows that

Loy = max(Ln + Gnets ner)

Thus the entire body of the inductive proof can be described as algebraic
transformations of the maximum function. (See [10) for a formal proof along
those lines.)

Outline of the Paper

We use the maximum segment sum example in Section 2 of the paper to illustrate
the ideas that motivated the design of our program refinement system, called
PRL. In Section 3 we describe the PRL system very briefly and show how the
example is treated using it. In the conclusion, Section 4, we reflect on some of
the general ideas raised by this new kind of programming system. We hope to

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

. e e R R

Proofs as Programs - 117

impart to the reader some sense of the unique style of programming made possible
by systems of this kind, of which PRL is the first example. We do not intend to
explain in this short paper how PRL works nor what new technical ideas have
emerged from using it. There are references given for such matters.

2. PATTERNS OF EXPLANATION

Experience in Mathematics

How can we explain the solution to a programming problem? If we look to recent
common practice we see how not to explain it, namely, by comments, written in
pidgin English, attached to the code. If, on the other hand, we look to mathe-
matics, where the issue has been of concern for hundreds of generations, then we
see successful paradigms. In particular, the concept of a proof has been developed
to convey complex and detailed explanations. A proof serves to organize all the
information needed to solve a problem and, moreover, introduces information
according to specific needs.

The notion of a proof serves not only to organize informations, but to direct
the analysis of a problem and produce the necessary insights. It is as much an
analytical tool as it is a final product [25]). It is this feature of proofs that our
system will exploit to aid the programmer.

Some of the methodology of mathematics has been codified in the style of its
presentation, the heart of which is the proof. The pattern of definition, theorem,
remark, definition, lemma, example, and so forth carries with it a tradition of
explanation. The mathematician is taught to decompose theorems into sequences
of lemmas, to build abstraction upon abstraction using definitions to hide details
in these abstractions, and to illustrate delicate cases or blind alleys by examples.
In the context of mathematical investigations, many great minds, such as
Descartes, Leibniz, Poincaré, and Polya have addressed the problem of method,
of how we know and how we explain. They have discussed “rules” for discovery
of proofs and “guidelines” for writing them. It is in this context that we can
explore various means of solving programming problems. We can encourage proof
presentation by successive refinement. We can compare various ways of filling
in detail (e.g., “top-down” and “bottom-up”). We can even provide “rules of
programming” to help people learn how to solve algorithmic problems.

Formality

For programming problems, such as our example, that deal with elementary (first
order) properties of numbers and finite sequences, we know how to be precise
about the notion of a problem, a solution, and an explanation. A problem is a
formula in a logical theory, the solution is some computable function, and the
‘ explanation is a formal proof. A typical 1970s conceptualization of programming
requires only that the computable function description be formal. But in fact it
appears that there are substantial reasons to formalize the explanations as well.
The principal reason to formalize the explanation is that it becomes a real data
object. We can obtain mechanical assistance in generating, checking, modifying,
and using it in other unforeseen ways. It then becomes a mathematical object in
its own right, like an integer, and we can learn to compute with it.

ACM Transactions on Programming Languages snd Systems, Vol. 7, No. 1, January 1985.

,_.:.‘.%:ﬁ”ww,({/j,:{f{ SR

118 . J. L. Bates and R. L. Constable

To illustrate the role of explanations, let us consider a proof of the existence
of a maximum segment-sum of a list of integers. We convert the analysis of
Section 1 into a careful proof. Anticipating an interest in formalizing this proof,
we use the notation of symbolic logic to describe the problem. The connectives
“and,” “or,” “implies,” and “not” are represented by &, V,=>, and ~ respectively;
and the quantifiers “for all integers x”, “for all lists A”, and “for some natural
number y” are represented as “all x:int”, “all A:list”, and “some y:nat”, respec-
tively. We use | A| to denote the length of a list, and A(i) to denote the ith
element of a list, provided 0 < i< |A |, and to denote 0 otherwise.

One proof results from defining the maximum operation and proving the
properties used in Section 1. The definition of max(l < q < k = n: f(q, k)) can
be given in terms of max(l < k = ¢: h(k)), which can in turn be defined
recursively as '

max(1 < k < 1: h(k)) = h(1)
max(l < k < ¢ + 1: A(k)) = max{max(1 =< k < g: h(k)), h(g + 1)}

Notice that the parameter g has the type of the natural numbers nat, and the
type of h is that of a function from nat to integers. Thus max is a “second order
operation.” This rather natural occurrence of so called higher level operations
explains why we are interested in a very expressive type theory in PRL (see [10]).
However, the core PRL theory, to be described in Section 3, does not include
second order operations.

A proof which follows the first method of analysis of Section 1 can be directly
formalized in the core PRL language, to be described later. This proof does not
appeal to general properties of the maximum operation, but deals instead entirely
with integers and lists. Since the PRL logic uses lists of integers as a primitive
data type, we cast the problem in these terms. Lists are naturally built from the
head, so it is convenient to recast the argument used above in terms of adding a
new element al at the head of A. It is also convenient to perform the induction
on the list A itself rather than on its length. These modifications actually simplify
the formal treatment of the problem; but there would be no essential difficulty
formalizing exactly the first argument used above.!

all A:list.someM:int.some [:int.

(allpgiint.(1spsg=|A|=M= Z;-p AUN &
(some a,b:int.(M = T} A(j)) &

all pint(1=p < |A| = 2 25 AU &

(some e:int.(= T -1 A(j)))

Proof by list induction a.B
Basis case: A = [] (A is the empty list)

choose M = I = 0, notice that | A| = 0, so that there are no p, ¢ in the interval. Also
notice that ¥}, A(j) = 0, so the choices of a, b, e are 1.

4 In fact, to test PRL’s optimizations on list processing, we did formalize that argument as well. It is
interesting to observe that to a human these two arguments are nearly identical, yet their external
structure is grossly different.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

e o o MoV T ot

Proofs as Programs 119

Induction case: A = a.B, and we assume the result for list B.

Since the base case is degenerate, we must consider whether B is empty or not.
We know B =[]]| ~ B =[] as a basic axiom about lists. Now we proceed by
cases on this disjunction.

Case B = []. In this case the maximum segment sum is the element a, which
is also the maximum initial segment sum.

Case ~ B=[]. In this case we choose MB and IB as the values of the maximum
segment sum and maximum initial segment sum for the list B which satisfies the
induction hypothesis. Now we proceed in two major steps.

(1) We first determine I. The claim is that I = max(a, a + IB)
We must show that .
(i) forallpinl=p=<|A4],

P
Iz 3 A(j) and
J=1
(ii) forsomee, I= Y51 A(j).
Consider (1), take anypinlsp s |Al;

forp>1,
P) P . -1)
Y A(j)=a+ T A(j)=a+ T B(j).
i=1 =2 i=1

Since 1 £p—1=<|B|, we know that IB = Y B(j), thus

a+Bza+'s BG) =5 AG)
for p=1, a o

Y1) A(j) = A(1) = g, and clearly a = a. Thus for all p in the interval,
max(a,a + IB) =2 35 A(j).

Consider (ii), if I = a, then e = 1 and if I = a + IB, then if
e e+l
IB =Y B(j) then I= Y A())

J=1 i=t
because index e in list B is position (e+1) in list a.B, so (e+1) is the new end
of the maximum initial segment.

(2) Next we determine M, the claim is that M = max(MB, I). We must show

(i) forallp,qwherel<sp=<g=<|4]|,

q
Mz .Z A(j) and
j=p
(ii) forsomea, b, M =35, A(j).

Consider (i), foranyp,qinl1 sp=<g=<|A|;ifwehavel<psothat2=<p
<g=<|A|,thenforanyjin2=<j=<|A|(,A(j) = B(j — 1). Therefore in this

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1885,

e

120 . J. L. Bates and R. L. Constable

range,

q . q-1 .

MB= ¥ A(j)= XY B().
j=p Jj=p=1
Forp=1and1=g=<|A|, we know from 1(1) that
q
Iz Y A()). .
J=1 .

Thus taking M = max(MB, I), we have M = ¥ ., A(j).
Consider (ii), if max(MB, I) = MB, then

b (b+1)
MB= Y B(j)= X)A(J') since A(j + 1) = B(j),
j=a © jm{atl

So the new limits of the maximum segment sum are (a+1), (b+1). If max(MB,
I)=1,thene=1andb=-e + 1 follow from 1(ii).

This ends the induction part. O

This proof is constructive, in a sense made precise in Section 3. Intuitively, it
is plausible that the proof is also a procedure for finding M and L. We know how
to execute every step. That is, whenever the existence of a number is claimed,
the proof shows how to calculate it from other numbers; these other numbers are
found by applying the proof procedure to a smaller list. Whenever the proof
proceeds by a case analysis on P V Q, there is a method of computing which of
Por Qholds (eg,B=[]| ~B=[)). .

Executing Proofs

The example has shown us more than we might have expected. It began as an
example of an explanation, but the possibility arises that it can also become the
complete solution because the proof itself, if formalized, can be executed. To see
how this is possible in general, let us consider the meaning of various constructive
statements.

A constructive proof of some y:int. R(x, y) will build a witness y for the
assertion R(x, y). For instance, a proof that some y:int. (y > x) will give an
expression for y such as (x + 1) or (2x+ 1). The particular value chosen depends
on the proof used. A proof that some y: int. (y > x & prime(¥)) will result in a
method for finding a prime number greater than x.

A proof by induction of an existential statement such as some yiint. R(x, y)
has the following pattern.

all x:list. some y:int. R(x, y)
Proof (by induction on x):
Base: construct some value y, where R([], yo)
Induction: assume some y:int. R(tl(x), y)
Show some y:int. R(x, y)
The proof builds a particular term ¢ for y using
x and the value y’ assumed to exist for
ti(x). So t can be denoted t(x, y’).
Qed
Qed

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

S R R RN R

Proofs as Programs -« 121

The part of the proof building the value y is a recursive procedure of the form
plx) =if x =[] then y, else t(x, p(ti(x)))fi. As long as the expressions y, and ¢(x,
y) are computable, so is the procedure. Indeed, we observe that p is an example
of a primitive recursive procedure [23).

A constructive faormal system has the property that every proof step can be
interpreted as a construction. This is explained in [22], and applied to program-
ming in [9, 2). So in fact it makes sense to execute constructive formal proofs. In
the case of a proof of all x:list. some y:int. R(x, y}, the proof is a function p such
that R(x, p(x)).

Although constructive proofs can be executed in principle, it is not yet known
how efficiently this can be done. It might be necessary to pursue the solution
further in the direction of known mechanisms for efficient computation, such as
those available in high-level languages such as ALGOL. But it is possible to go
in this direction within the context that regards proof as explanations and
explanation as the most important product of programming. This can be done
by treating commands such as assignment as part of the logichl system, as was
done in [13] and in [2], for example. But in the course of the work reported in
(2], it became increasingly plausible that the commands were not necessary either
for efficient execution or for cogent explanation. Indeed, the language without
commands was far simpler to explain and appeared tractable to implement. So
the goal of our program refinement research became that of building and testing
an implementation of a constructive theory of mathematics. The key new
ingredients would include a component to extract code from constructive proofs,
called an extractor, and an interactive proof-generating environment to help the
user build formal proofs. This proof synthesizer would encourage a top-down
refinement style of proof construction, as described in [2, 24]. It would also
employ the technology of modern programming environments, especially the
Cornell Program Synthesizer [37). The work of Dean Krafft in building a
synthesizer environment for PL/CV2, called AVID [24], provided encouraging
evidence that such systems would make the task of formal proof-generation
tolerable for a logic sufficiently close to PL/CV2.

In the next section we describe some aspects of the logic and system resulting
from achieving these goals.

3. THE PRL LOGIC

Background

The method of treating a proof as a program is applicable in a variety of
constructive theories, from those about numbers to those about sets. A consid-
erable part of our effort on the “PRL project” has been spent in defining a very
general theory in which these methods work; this is a type theory in the sense of
Whitehead and Russell [38], deBruijn [12], Martin-Lof [27], Andrews [1], and
the related work of Constable [3, 10, 11, 12]. Some of our ideas are presented in
[3, 10]. Considerable effort was also spent in designing a system with which to
support this very general theory. The system should provide a modern environ-
ment for interactive proving and problem solving, and be based on the notion of
a library of results organized into books, chapters, sections, and so on. The user
should have help in generating material for publication in the library and a

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

122 . J. L. Bates and R. L. Constable

“smart” editor for viewing and modifying results in the library. There should also
be a means of invoking formal metareasoning to extend the system safely,
building, for example, guaranteed proof tactics [11, 17) and heuristic problem
solvers [4, 7, 8, 40].

There are many difficult technical problems associated with building a system
of this generality (discussed elsewhere). This complexity led us to an incremental
development of the system and its logic. We began with a core logic of integers
and lists of integers and a core system supporting a simple library, a structure
editor similar to the Cornell Program Synthesizer {37] and AVID (24}, but with
user-defined templates, a proof extractor based on Bates’ thesis [2], a metarea-
soning facility obtained by embedding PRL in Edinburgh LCF as an object theory
{17], and a decision procedure combining a simplifier, a congruence closure
equality reasoner, and -an arithmetic reasoner over integers. This is the core
version of PRL, which is implemented, and which we briefly describe in this

section. '

Syntax and Proof Rules

The atomic types of the theory are integer and integer list, which are abbreviated
int and list, respectively. The terms of the theory are constants, variables,
applications of the fori f(es, ...,) or e; op e, where e; are terms and op is an
operator, and listings [ey, ..., e.), where ¢; are integer terms. The constants
include nonnegative decimal numerals, 0, 1, 2,. .., the unary function, the infix
binary operators +,'—, *, /, and various atomic functions: mod, hd, tl, and - . The
] function constants mod, hd, t!, and - have the types:

mod int X int — int
hd: list — int
th list — list

int X list — list

The atomic formulas of the theory are e, = e, for arbitrary terms e; of the same
type and e, < e; for e; of type integer.

Compound formulas are ~A, A&B, A|B, A= B for A and B formulas. The
usual precedence holds among these connectives (not, and, or, implies): ~, &, |,
=; and = is right associative. In addition, compound formulas include

all x;,..., xp: type . A

some x3,..., X,: type . A
where A is a formula and x; are variables. Quantifiers bind more weakly than
connectives, so they have a wide scope. Free and bound variables are defined as
usual.

An environment env is a list of variables and their types such as [x:int, B:list].
We use [e] U x:int to denote appending x:int to [e]. A goal has the form

(env] Assm >»> conc

where Assm is a list of formulas called the assumptions and conc is a single
formula called the conclusion.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

o ...~...~.\.\-".\vh\v~.m N e L AL R TR SR

Proofs as Programs + 123

A proof is an expression of the form
goal by rulename

P

Pn
where p, are proofs. The rule names are certain constants, such as those listed
below. It is convenient to think of the proof expression in the form f(p,, ..., p.),

where f is the rule name and “goal” is the range-type of f viewed as a function.

The proof rules‘fall into five categories: (1) predicate calculus rules; (2)
arithmetic rules (taken from PL/CV2 [13], see also Shostak [35]); (3) list rules;
(4) rules to reference the library and defined objects; and (5) rules to invoke
tactics built in the metalanguage ML of Edinburgh LCF. Here we illustrate some
of these, starting with the predicate calculus rules. We use the notation B(t/x)
to denote the formula obtained from B by substituting the term ¢ for all free
occurrences of x in B. In the elimination rules assume that n is the number of
the formula between S and S’.

& S > A&B by intro S,A&B,S’' 3> Gbyelimn
1. S>»A 1. 8 AB>»G
2.S»B
| S>» A|Bbyintrol S,A|B,S'» Gbyelimn
.L.S»A 1. $S'A»G
2.8,S'B>»G
S>> A|Bby intro 2
1. S»B
= S > A = B by intro S,A=B,S' > Gbyelimn
S,A>B 1. SSA=B,8" 3 A
2. SA=B,S’, A B>» G
all [e] S>> all x:A.B by intro S,all x:A.B,S’ > G by elim n,t¢
[ejJux:A S>> B S,S'.B(t/x) > G
some S >»> some x:A.B by intro ¢ (e]) S,some y:A.B,S’ x> G by elim n
S>> B(t/x) [e]Juy:A §,S' B G
consequence S>> GbyseqA
1. S»A
2. S,A»G
hypothesis S,A,S">>Abyhypn
false elim S,false,S’ > G byelimn

The induction rule for integers has this form when specialized to base 0.

[e) S>> all x:int.P by ind

1. [eJU x:int S, x <0, P(x + 1/x) > P
2. S » P(0/x)
I lejUx:intS, x>0, Plx — 1/x) > P

The variable x cannot yet appear in e; if it does, the rule can be called “ind y”",
where y is a new variable that will be used ir the hypotheses in place of x.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

124 . J. L. Bates and R. L. Constable

One can also perform induction with k base cases, say by, ..., b The induction
rule for lists has this form when specialized to base [].

[e]S > all A:list.P by ind x.B .
1. S= P(()/A)
2. [e] U x:int U B:list S, P[B/A] >> P(x.B/A)

The variables x, B must not yet appear in e; if they do, they can be rename&, as
in the integer induction case.

Libraries

The PRL system helps the user generate a library of results and allows users
certain operations on the members of the library. The results can be of four
kinds. .

(1) (THM) named proofs of theorems, whose syntax is: name thm proof. The
proof can be used subsequently by mentioning the name in the lemma reference
rule.

(2) (EXT) named functions extracted from proofs, with syntax: name extract
theorem name, where the theorem must be of the form all xy ... x,: type.some y:
type.P. The function may be used in subsequent applications. .

(3) (DEF) definition of new notation in terms of existing notations, syntax:
name def template == right-hand side, where template is a list of characters and
parameters of the form (id:comment), and the right-hand side is any piece of
text with interspersed parameter references. For example, | (A:list) | == length
((A)) defines the notation |A| to be the length of list A. Library members
constructed after such a definition may use the notation of the template, with
the system construing their meaning as the right-hand side. Since PRL editors
are structure editors, these user-defined notations are never parsed, hence there
are no restrictions on the notations defined, except that they be displayable.

(4) (REC) primitive recursive definitions of functions over int or list. The
syntax for integer definitions is

f(x:int, .. .):type =
x=t
a=b4

b="n-l
xe=>t,

with the property that for any integer x and other arguments to f,

x<a=f(x,...) =1t
x=a=fx..)=4

> b= flx,...)=t,

Given that ¢, . . . t»—, have no reference to f, t, may invoke f recursively, with first
argument x + ¢ and arbitrary other arguments; for c, a constant between 1 and

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

PO

gt

Proofs as Programs - 125

b —a + 1, t, may invoke f recursively with first argument x — ¢ and arbitrary
other arguments.
The syntax for list definitions is

flx: list, ..):type =
0= ¢

n=t,
x":’tmrl

with the property that for any list x and other arguments to f,
length x = 0 = f(x,...) =tq

lengthx=ne= f(x,..)=¢,
length x> n e f(x,...) = t,,,

given that ¢, ..., ¢, do not invoke f, and t.,, may call f recursively with first
argument tlx, titlx, ... or ¢t{"*'x, and arbitrary other arguments. It is possible to
define several mutually recursive functions in one definition block, but the
schemes of all the functions must be identical.

System Features

Interaction with the PRL system is through a command language and two editors,
ted for editing text and red for editing refinement proofs. There are commands
to manipulate the library, invoke the editors, evaluate functions, and control
input/output.

Objects are entered in the library using one of the two editors; preparatory to
building them a named place is created in the library by the command

create (name) (kind)(location)

where DEF, REC, THM, EXT are the kinds—for example, create thm?2 THM
after thml. The labels DEF, REC, and so on refer to the kinds of objects
catalogued above. The status of an object is indicated by one of the symbols ?,
—, #, * before the name. A * denotes a complete and correct object; a # denotes
an incomplete object, say a partial proof; a — denotes a bad object, say an
erroneous proof; and a ? denotes a raw or unchecked object (perhaps an empty
location).

The editors are invoked by viewing an object. If one views a proof, the proof
editor is automatically used, otherwise the text editor. The text editor is also
used to edit the statements and proof rules of theorems. Various aspects of the
system operation are illustrated in the examples that follow.

Sample Scenario

Here are fragments of a session with PRL, to prove the maximum segment- sum
example. Already built are small libraries of facts about integers and lists, among

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

126 . J. L. Bates and R. L. Constable

these facts are the following definitions and theorems:
- ge
DEF (int) = (int)
*ai
DEF (list)[int)
* inddef
REC index: int, list — int
*len
DEF | (list}|
* interval
DEF (int) < (int) < (int)
* max
THM > all x, yiint.some zint.(x <y=z=y)&(~x<y=2z= x)

* maxf

EXT max:int, int — int
By viewing these objects we can see their structure, for example, the command
“view ge” reveals,
(a:int) = (biint) == ~(a@) < (b)
and “view ai” reveals,
(@:list) [(n:int)] == index((n}, (a))
and “view index” reveals,

index(Z:int, a:list):int =
1=> hda,
i=sindex(i — 1, t! a)

The command “view interval” reveals, .
{a:int) < (bint) < (ciint) == ~(b) < (@) & ~(c) < (b)

These definitions enter the proof essentially as macros.

The development of the maximum segment sum example begins with the
definition of the sum of a list a, regarded as an array, from index p to index q.
Here are the details.

(1) Create recursive definitions. Let sumd(n, i, a) = ali] + ali + 1] + --- +
afi + n). This is defined recursively as

sum 4(n:int, i:int, a:list):int =

0= dli),
n=safi] + sumd(n - 1,i + 1,a);

The downward case, n < 0, is omitted, resulting in the default that
sumd4(n, i, a) = 0 for n < 0. The base case is sum4(0, i, a) = ali}, and the up cade
is the last line. These clauses are referred to in proofs by the definition rule, as
in

def sum4(n, ¢, a) up
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985,

VI RO PP PR

L adbntea

PR -

Proofs as Programs + 127

which results in the new assumption,

sumd(n, i, a) = a(i{] + sumd(n — 1,1+ 1, a)

- given that we show 0 < n.

The summation operation we really want is sum3(p, g, a) = a[p] + a[p + 1]
- + a[q], which is defined as

sum3(p:int, g:int, a:list):int =
0 = sumd(q, p, a),
p = sumd(q — p, p, a);

We prove these facts about sum3.

* sum3thml
THM = all a:list. all n:int.
1 < n = sum3(n, n, e) = an]

* sum3thm2
THM > all n:int, all a:list. all p, g:int.
1<spsqg&n=q-p=
sum3(p, q, @) = a[p) + sum3(p + 1, ¢, a)

* sum3thm3
THM > all n:int. all a:list. all p, g:int.
l1<sp=<q&n=q-p=
sum3(p, g, a) = sum3(p, ¢ — 1, a) + a(q)

The next step is to create certain definitions specific to the maximum segment
sum example.

(2) Create specialized definitions. We need to mention those special segments
that start at the first index, which we call initial segments. Here are some
definitions.

initsegment

DEF .

(a:int) is as large as any initial segment sum of (A:list)
=all iéint. 1 S§ s | (A)| = {a) = sum3(1, i, (A))

endinitseg

DEF

(a:int) is the initial segment sum ending at (e:int) of {A:list)
= (a) = sum3d(l, (e), (A))

We need also the definition of a segment and the condltlon for a segment to
be maximum. These are

segdef

DEF

(n:int) is the sum of the segment of (A:list)
from {p:int) to (g:int)

==((n) = sum3((p), {g), (A4)))

ACM Transactions on Programming Langueges and Systems, Vol. 7, No. 1, January 1985,

“Wr'—"—mr“ v s T

128 . J.L. Batesand R. L. Constable

. maxseg
DEF
(n:int) is as large as any segment of (A:list)
== (allp,qiint. 1 S p=qg= | (Al = (n) = sum3(p, g, (A}

We are now prepared to state the main theorem.

(3) Edit main theorem goal. We create a place in the library for the main
theorem and then edit the goal, resulting in the following statement:

| # top

| 5> all A:list.some M:int.some [:int.
| M is as large as any segment sum of A &
| (somea, biint.M is the sum of the segment of Afromatod) &

| 1is as large as any initial segment of A &

| (some e:int.] is the initial segment sum ending at e of A)

Next, we outline a proof of the theorem including only those steps needed to
execute it.

(4) Build a proof skeleton. (i) From the informal sketch in Section 2 we know
that we can proceed by list induction with base case nil. We issue the command:
ind a1.B. We choose a1l to suggest A[1), and we use B as a simple name for the
tail of A. We know A = al.B. The result of this command is a proof tree with
the structure:

R -] i R b A kb e s S IS | T TR e At e iy

e

= all A:list.G
ind al.B
/ \

L

/ \
#1. 3 G([}/A) #2. G(B/A) > G(al.B/A)
Here is the actual terminal output:
| # top

| >+ all A:list.some M:int.some I:int.M is as large as any segment sum of A
| & (somea, b:int.M is the sum of the segment of A from a to b)

| &Iis as large as any initial segment of A

| & (some e:int.] is the initial segment sum ending at e of A)

|
(BY ind al.B

D LA

. ; EITHL W - 4 LN e 1 A AL ek
: ot ST T T e e

I1[}

<> some M:int.some [:int.M is as large as any segment sum of {) -
& (some a, bint.M is the sum of the segment of [] from a to b)
& I is as large as any initial segment of]
& (some e:int.] is the initial segment sum ending at e of [])

]
|
|
|
|
| 2# [int al; list B)

| 1. some M:int.some L:int.M is as large as any segment sum of B
| & (some a, biint.M is the sum of the segment of B from a to b)
| & [is as large as any initial segment of B

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

IR AT

Proofs as Programs « 129

& (some e:int.] is the initial segment sum ending at e of B)
sp> some M:int.some [:int.M is as large as any segment sum of al.B

& I is as large as any initial segment of a1.B
& (some e:int.] is the initial segment sum ending at e of a1.B)

|
|
| & (some a, b:int.M is the sum of the segment of al1.B from a to b)
|
|

A proof of the base case is trivial because sum3(i, j, []) = 0 for all i, j. We only
need to instantiate each existential quantifier with 0, and trivial reasoning will
finish the proof.

The informal proof of the induction case has the structure:

B=[}| ~B=]]
case B =[]
choose M = I = al.
case ~B =[]
1. choose values of I, M for the list B,
call them IB, MB
2. instantiate the quantifiers for M and
with maxf(MB, max{f(al, al + IB)) and
maxf(al, al + [B), respectively
3. prove the four subgoals
Gi: M is maximum
G M is a segment
G,: I is maximum initial
G I is an initial segment

For the purpose of executing the proof, we only need to instantiate the
quantifiers. Here are the subgoals under 2, as they appear in the actual proof.

| BY intro maxf(MB, maxf(al, al + IB))

|

| 1# [int al, MB, IB; list B)

| 1. MB is as large as any segment sum of B

| & (some a, b:int.MB is the sum of the segment of B from a to b)

| & IB is as large as any initial segment of B

| & (some e:int.IB is the initial segment sum ending at e of B)

| 2.~B=][]

| > some I:int.maxf(MB, maxf(al, al + IB)) is as large as any segment sum of al.B

| & (some a, biint.maxf(MB, maxf(al, al + IB)) is the sum of the segment of al.B
from a to b) .

[& I is as large as any initial segment of a1.B

[& (some e:int./ is the initial segment sum ending at ¢ of al1.B)

| BY intro maxf(al, al + IB)

|

| 1# [int al, MB, IB; list B)

| 1. MB is as large as any segment sum of B

| & (some a, biint.MB is the sum of the segment of B from a to b)
| & IB is as large as any initial segment of B

| & (some e:int./B is the initial segment sum ending at e of B)

| 2. ~B=[]

ACM Transactions on Programming Languages and Systemns, Vol. 7, No. 1, January 1985.

130 . J. L. Bates and R. L. Constable

| > maxf(MB, maxf(al, al + IB)) is as large as any segment sum of al.B

| & (some a, b:int.maxf(MB, maxf(al, al + IB)) is the sum of the segment of al.B
from a to b)

| & maxf(al, al + IB) is a8 large as any initial segment of al.B

| & (some e:int.maxf(al, al + IB) is the initial segment sum ending at e of al.B)

(5) Execute the partial proof. Itis interesting to evaluate the partial proof to
see whether the specification of the problem is what we expected. We can also
discover properties of the function which may lead to modification of the
specifications.

Here is a picture of the evaluation from a PRL session.

* maxsegf:list — int .
eval maxsegf([—1,0,1, 2, -2,4]) =5

It is important to realize that we are seeing a new mode of programming here
which is unique to PRL. The proof skeleton that we are executing is comparable
in many ways to a program for the specified task. One important way in which
it is comparable is that its gize and the time taken to produce it are of the same
order of magnitude as the size and time taken to produce a program. So PRL
can be used comfortably as a programming language. But in these incomplete
proofs there is already critically more information than in the pure program.

The PRL partial proof contains an outline of an explanation about why the
problem is solvable. There may be only a few more lines of text than in a
commented program, but these lines are known to be pertinent to a detailed and
rigorous explanation of why the problem is solvable. These lines provide the
skeleton upon which a complete explanation can be built. In the case of a program
for this task, there is no formal reason that any explanation be included at all,
let alone one formally related to the code.

We look next at the structure of the remainder of the proof. As we provide
more detail, our confidence in the argument increases until we reach the point
of a complete proof. At this point we are in the realm of “verified programming.”
If we are confident of the underlying system and logic, then we are confident of
the solution. Since the system is a fixed finite object, we can spend considerable
resources in guaranteeing its correctness and thereby increase our confidence in
an arbitrary number of solutions.

(6) More proof detail. Recall the structure of the inductive case. We instantiate
the quantifiers and then prove the conjunction

S»Gl&Gz&Ga&G4.

The clauses G; are written in the order desirable for the problem statement; first
there is information about M, the main value, then about I, the auxiliary value.
But it is very important to notice from the informal proof that these subgoals
must be proved in a particular order:

1. show Gj then

9. show G, using Gs then

3. show G, using G and G, then
4. show G; using Gi.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

e RSO s L
eV r e b
R RN e
e e

Proofs as Programs -« 131

If we attack these as independent subgoals we will fail, thus we cannot let the
automatic decomposition of goals proceed without guidance. This typifies a
weakness of completely automatic methods at this stage of our knowledge.

The way we structure this part of the proof is to first invoke the rule of
consequence with G; & G,. Here is the structure:

S»Gl&Gg&Gg&Gbysqua&G‘
1. S Gs & G,
2.5G&G>»G &G &G, &G,

To prove 1 we use seq Ga, which gives

S»G;,&&bysqu;
#1. S»Gs
#2. S,G:>» G; & G,

These structures are revealed in the following snapshots of the terminal session
building this proof.

| BY seq maxf(al, al + IB) is as large as any initial segment of al.B
| & (some e:int.maxf(al, al + IB) is the initial segment sum ending at e of a1.B)

S i i1 1

This rule generates the following subgoals, displayed on the screen exactly as
shown below.

| EDIT THM mainthm2

#...1111
1# [int a1, MB, IB; list B]
1. MB is as large as any segment sum of B
& (some q, b:int.MB is the sum of the segment of B from a to b)
& IB is as large as any initial segment of B
& (some e:int.IB is the initial segment sum ending at e of B)
> maxf(al, al + IB) is as large as any initial segment of a1.B
& (some e:int.maxf(al, al + IB) is the initial segment sum ending at e of a1.B)

2¢# (int al, MB, IB; list B}
1. MB is as large as any segment sum of B
& (some g, b:int.MB is the sum of the segment of B from a to b)
& IB is as large as any initial segment of B
& (some e:int./B is the initial segment sum ending at e of B)
2. maxf(al, al + IB) is as large as any initial segment of al.B
& (some e:int.max/(al, al + IB) is the initial segment sum ending at ¢ of al.B)
> maxf(MB, maxf(al, al + IB) is as large as any segment sum of al.B
& (some g, biint.maxf(MB, maxf(al, al + IB) is the sum of the segment of al.B
fromato b)
& maxf(al, al + IB) is as large as any initial segment of a1.B
& (some e:int.maxf(al, al + IB) is the initial segment sum ending at e of a1.B)

To finish this proof we need a number of lemmas about sum3 and maxf. We
show a complete proof of one of them, to offer a look at other important
characteristics of PRL such as the use of proof tactics.

ACM Transactions on Programming Langusges and Systems, Vol. 7, No. 1, January 1985,

‘r".’,’fy?/m,’/,',‘,x. F T

132 . - J. L. Bates and R. L. Constable

(T) Complete proofs. Here is an example of a very simple argument which
can be produced on the system in about two minutes after the goal is entered.
Proofs of this kind yield to a very gimple heuristic search which introduces
certain disjunctions such as a < b|~a < b. We have not explored such tactics
very far, but we do rely heavily on tactics such as trivial, which perform the kinds
of “immediate reasoning” widely exploited in our earlier work on PL/CV [13].
The tactic trivial searches for a proof using the elimination rules on &, =», | and
introduction rules on &, =. It also performs all introduction, some elimination,
and certain cases of all elimination and some introduction. The tree structure of

the proof follows:

= all g, biint.maxf(a, b} = maxf(b, a)
BY universal
BY def maxf(a, b} (see frame 1)
BY def maxf(b, a)
BY trivial (see frame 2)
BY seqa<b|~a<b
/ \
/ (location11112)
BY arith BYelimona<b|~a<b (see frame3)
/ \
/ \
\
BY immediate BYseqb<alb=a
/ \

/ \

/ \
BY immediate BY COMPLETE immediate
(see frame 4)

The reader navigates through this tree using a mouse (or a key pad) to descend
or ascend. The screen is rapidly redrawn to display the new nodes. The frames
displayed below are snapshots of the screen as we walk through the completed
proof. However, no presentation of the proof on paper can capture the dynamic
character of reading or creating it interactively.

Frame 1

| EDIT THM maxthm?
|
{*top 1

| lint a, b]

| maxf(a, b) = maxf (b, a)

|

| BY def max{(a, b)

l

| 1* [int @, b}

| 1. (a<b=> maxf(g,b)= b)&(~a < b = maxf{a, b) = a)
| s> maxf(a, b) = maxf(b, a)

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

e et LR ISR R

Fo I]

Proofs as Programs - 133

5 Frame 2

|EDIT THM maxthm?2

|[*topl11

| [int a, b]
1. (a < b => maxf(a, b} = b)&(~a < b =maxf(q, b) = a)
2. (b<a= maxf(b,a) = a)&(~b<g= maxf(b, a) = b)
>> maxf(a, b) = maxf(b, a)

BY trivial

|

|

[

I

]

I

} 1* [int a, b)
| 1. (@ <b=> maxf(a, b) = b)

| 2. (~a<b=>maxf(a,b) =a)
| 3. (b<a= maxf(b, a)=a)

| 4. (~b<a=maxf(b, a) =b)
| > maxf(a, b) = maxf(b, a)

|

Frame 3

| EDIT THM maxthm2
|
[*...1112
| [int a, b]
1. (a < b=> maxf(a, b) = b)
2. (~a < b= maxf(a,b) = a)
3. (b<a= maxf(b,a)=a)
4. (~b<a= maxf(b a) =b)
5. a<b|~a maxf(a, b) = maxf(b, a)

BY elim 5

|

|

|

|

I

I

|

|

[

| 1* [int a, b}

| 1 (a< b= maxf(a, b) = b)
| 2. (~a<be=>maxf(a,b)=a)
| 3. (b<a=>maxf(b,a)=a)
| 4. (~b<a=>maxf(b, a)=b)
| 5.a<b

| > maxf(a, b) = maxf(b, a)
|
|
|
[
I
|
I
[
i

2* [int q, 0]
1. (a < b=> maxf(a, b) = b)
2. (~a <b= maxf(a, b) = a)
3. (b <a=>maxf(b,a) =a)
4. (~b<a=maxf(b,a) = b)
5 ~a maxf(a, b) = maxf(b, a)

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

e e e

134 . J. L. Bates and R. L. Constable

Frame 4

j*...1222

| [int a, b)

| 1. (a<b= maxf(a,b)=25)

| 2. (~a<b=>maxf(a,b) = a)
| 3. (b<a= maxf(b,a)=a)
| 4. (~b<a=>maxf(b,a)=">)
| 5. ~a<b

| 6. b<alb=a

| > maxf(a, b) = maxf(b, a)
I

|

|

BY COMPLETE immediate

4. CONCLUSION

The version of PRL described here is a completed and working system which
runs in a UNIX environment with Franz Lisp or on a Symbolics 3600 in Zetalisp,
as described in the users’ manual [31]). The system consists of about 33,000 lines
of Lisp for PRL and 7000 lines for ML. PRL is used as a demonstration prototype,
for teaching and for experiments.

Although there is much to be done to make a system like PRL competitive
with conventional programming systems, even the existing implementation is a
valuable tool for many kinds of problems. We were able to write the maximum
segment sum proof skeleton in less than one hour. This skeleton is the direct
analogue of a conventional program for the same task. In another hour of work
we were able to reduce the correctness of this example to a few very simple
lemmas such as sum3thm2. These lemmas are easy to understand because they
are part of ordinary mathematics, and can be proved by transcribing the usual
proofs, as we have illustrated. For a critical problem, it may be worth the effort
to prove all of the lemmas. The more such systems are used, the easier they
become, because libraries of useful facts and proof methods accumulate.

It is clear that systems such as PRL are much more than program development
tools; they are also environments for doing formal mathematics. Similar tools for
this purpose, such as symbolic mathematics packages and automatic theorem
provers, will congregate around these nuclei. There will emerge areas of rigorous
computational mathematics which will be done best in these computer-assisted
environments. Programming in these realms will be done as we have illustrated
here.

We have designed and implemented a richer logic based on a theory of types
(10, 11, 27}, called Nuprl; its structure is similar to that of PRL, since our original
design was for this richer logic. However, the underlying logic is so expressive
that in it we can formalize virtually any concept in computational mathematics.
This kind of theory has opened many new opportunities for writing formal
computational mathematics, from real analysis, graph theory, and automata
theory to algebra and denotational semantics. Among the many promising
directions to follow, our experience with proof tactics shows that developing the

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

- - e T v LR R X

Prools as Programs . 135

formal metamathematics may be one of the most fruitful. This will be a major
thrust for us in the next year.

With PRL and Nuprl, we have demonstrated that we know how to build a new
kind of environment for programming. There is a large class of problems for
which we claim that a production system of this kind is significantly superior to
any alternative, extant or speculative.

ACKNOWLEDGMENTS

We would like to thank our colleagues on the PRL project for their advice and
suggestions. We especially acknowledge the detailed criticisms of Fred Schneider
and David Gries. David Gries also supplied us Jon Bentley’s problem on segment
sums. We also appreciate_the efforts of Donette Isenbarger in preparing the
manuscript.

REFERENCES

1. ANDREWS, P. B, COHEN, E. L., AND MILLER, D. A. A look at TPS. In 6th Conference on
Automated Deduction. Lecture Notes in Computer Science, 138. Springer-Verlag, New York, 1982,
50-69.

2. BATES, J. L. A logic for correct program development. Ph.D. dissertation, Dept. of Computer
Science, Cornell Univ., 1979,

3. BATEs, J., AND CONSTABLE, R. L. Definition of Micro-PRL. Tech. Rep. TR 82-492, Computer
Science Dept., Cornell Univ., Oct. 1981.

4. BisHop, E. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

5. BisHopr, E. Mathematics as a numerical language. In Intuitionism and Proof Theory. J. Myhill,
et al., Eds., North-Holland, Amsterdam, 1970, 53-71.

6. BLEDSOE, W. Nonresolution theorem proving. Artif. Intell. 9 (1977), 1-36.

7. BOYER, R. 8., AND MOORE, J. 8. A Computational Logic. Academic Press, New York, 1979.

8. BunpY, A. The Computer Modelling of Mathematical Regsoning. Academic Press, New York,
1983.

9. CONSTABLE, R. L. Constructive mathematics and automatic program writers. In Proceedings of
IFIP Congress, (Ljubljana, 1971), 229-233.

10. CONSTABLE, R. L., AND BATES, J. L. The nearly ultimate PRL. Dept. of Computer Science
Tech. Rep. TR 83-551, Cornell Univ., Apr. 1983,

11. CONSTABLE, R. L. Intensional analysis of functions and types. Dept. of Computer Science
Internal Rep. CSR-118-82, Univ. of Edinburgh, June 1982.

12. CONSTABLE, R. L., AND ZLATIN, D. R. The type theory of PL/CV3. ACM Trans. Program.
Lang. Syst. 6, 1 (Jan. 1984), 94-117.

13. CONSTABLE, R. L., JOHNSON, S. D., AND EICHENLAUB, C. D. Introduction to the PL/CV2
Programming Logic. Lecture Notes in Computer Science, 135. Springer-Verlag, New York, 1982.

14. CONSTABLE, R. L. Programs as proofs. Inf. Process. Lett. 16, 3 (Apr. 1983), 105-112.

15. pEBRUUN, N. G. A survey.of the project AUTOMATH. In Essays on Combinatory Logic,
Lambda Calculus, and Formalism. J. P, Seldin and J. R. Hindley, Eds., Academic Press, New
York, 1980, 589-606,

16. DIIKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

17. GORDON, M., MILNER, R., AND WADSWORTH, C. Edinburgh LCF: A Mechanized Logic of
Computation. Lecture Notes in Computer Science, 78, Springer-Verlag, New York, 1979.

18. GRIES, D. The Science of Programming. Springer-Verlag, New York, 1982.

19. Guarp, J. R., OGLESBY, F. C., BENNETT, J. H., AND SETTLE, L. G. Semiautomated mathemat-
ics. J. ACM 18 (1969), 49-62.

20. HoaRre, C. A. R. An axiomatic basis for computer programming. Commun. ACM 12 (Oct. 1969),
576-580.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985,

136 . J. L. Bates and R. L. Constable

21. JUTTING, L. S. Checking Landau’s “Grundlagen” in the AUTOMATH system. Ph.D. disserta-
tion, Eindhoven Univ., Math. Centre Tracts No. 83. Math. Centre, Amsterdam, 1979.

29. KLEENE, S. C. On the interpretation of intuitionistic number theory. JSL 10 (1945), 109-124.

23. KLEENE, S. C. Introduction to Metamathematics. D. Van Nostrand, Princeton, N.J., 1952.

24. KRAFFT, D. B. AVID: A system for the interactive development of verifiable correct programs.
Ph.D. dissertation, Cornell Univ., Aug. 1981.

95. LAKATOS, . Proofs and Refutations. Cambridge University Press, Cambridge, 1976.

26. MANNA, Z., AND WALDINGER, R. A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2,1 (Jan. 1980), 90-121.

27. MARTIN-LOP, P. Constructive mathematics and computer programming. In 6th International
Congress for Logic, Method, and Philosophy of Science, (Hannover, Aug. 1979).

98, NORDSTROM, B. Programming in constructive set theory: Some examples. In Proceedings 1981
Conference on Functional Programming, Languages, and Computer Architecture, (Portamouth,
1981), 141-163.

29. PauLSON, L. Structural inductions in LCF. In Proceedings International Symposium on Se-
mantics of Data Types. Springer-Verlag, New York, 1984.

30. PoLya, G. How To Solve It. Princeton University Press, Princeton, N.J., 1945.

31. PROOFROCK, J. A. PRL: Proof refinement logic programmer’s manual (Lambda PRL VAX
version). Computer Science Dept., Cornell Univ., 1983.

32. RevNOLDS, J. C. The Croft of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1981.

33. ScotT, D. Constructive validity. In Symposium on Automatic Demonstration. Lecture Notes in
Mathematics, 125. Springer-Verlag, New York, 1970, 237-275.

34. SHOSTAK, R. E., SCHWARTZ, R., AND MELLIAR-SMITH, P. M. STP: A mechanized logic for
specification and verification. In 6th Conference on Automated Deduction. Lecture Notes in
Computer Science, 138. Springer-Verlag, New York, 1982, 32-49.

a5. SHosTAK, R. E. A practical decision procedure for arithmetic with function symbole. J. ACM
26 (Apr. 1979), 361-360.

36. STENLUND, S. Combinators, Lambda-Terms, and Proof-Theory. D. Reidel, Dordrecht, 1972.

37. TEITELBAUM, R., AND REPS, T. The Cornell program synthesizer: A syntax-directed program-
ming environment. Commun. ACM 24, 9 (Sept. 1981), 563-573.

a8, WHITEHEAD, A. N., AND RUSSELL, B. Principia Mathematica. Vol. 1, Cambridge University
Press, Cambridge, 1925.

39. WIRTH, N. Systematic Programming: An Introduction. Prentice-Hall, Englewood Cliffs, N.J.,
1973.

40. Wos, L., OVERBEEK, R., EWING, L., AND BoYLE, J. Automated Reasoning. Prentice-Hall,
Englewood Cliffs, N.J., 1984.

Received June 1983; revised June 1984; accepted July 1984

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

SR TN 3

