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Abstract. When we learn mathematics, we learn more than definitions and theorems. We learn techniques
of proof. In this paper, we describe a particular way to express these techniques and incorporate them into
formal theories and into computer systems used to build such theories. We illustrate the methods as they
were applied in the A-PRL system, essentially using the ML programming language from Edinburgh LCF
[23] as the formalised metalanguage. We report our experience with such an approach emphasizing the
ideas that go beyond the LCF work, such as transformation tactics and special purpose reasoners. We also
show how the validity of tactics can be guaranteed. The introduction places the work in historical context
and the conclusion briefly describes plans to carry the methods further. The majority of the paper presents
the A-PRL approach in detail.

Keywords. AUTOMATH, automated reasoning, decision procedures, formal mathematics, intelligent sys-
tems, LCF, ML, PRL, proof checking, tactic.

1. Introduction
1.1. STATEMENT OF THE PROBLEM

In the time of the Greeks, geometers were already building machines to help them
with derivations. Continuous and sustained interest in providing mechanical aids to
reasoning can be traced to the seventeenth century. Gottfried Leibniz is popularly
believed to have contributed to symbolic logic in striving to mechanize reasoning, and
while his technical contributions in this subject were minor, his vision and the
authority which his stature accorded it are with us today. His words still kindle an
interest little diminished by the naivete of their details [31].

A term is the subject or predicate of a categorical proposition. . . . Let there be assigned to any term its
symbolic number, to be used in calculation as the term itself is used in reasoning. I chose numbers whilst
writing; in due course I will adapt other signs . . . For the moment, however, numbers are of the greatest
use . . . because everything is certain and determinate in the case of concepts, as it is in the case of numbers.
"The one rule for discovering suitable symbolic numbers is this; that when the concept of a given term is
composed directly of the concept of two or more other terms, then the symbolic number of the given term
should be produced by multiplying together the symbolic numbers of the terms which compose the concept
of the given term. In this way we shall be able to discover and prove by our calculus at any rate all the
propositions which can be proved without the analysis of what has temporarily been assumed to be prime
by means of numbers. We can judge immediately whether propositions presented to us are proved, and that
which others could hardly do with the greatest mental labor and good fortune, we can produce with the
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guidance of symbols alone . . . As a results of this, we shall be able to show within a century what many
thousands of years would hardly have granted to morals otherwise.

The possibility of actually carrying out such a program of analysis for a substantial
body of knowledge, such as mathematics, did not exist until the appearance of the
predicate calculus in G. Frege’s Begriffsschrift [18]. Frege created a new language for
writing precise thought. His reasons for doing so are exactly those which motivate this
work. We defer to Frege’s wording:

In apprehending a scientific truth we pass, as a rule, through various degrees of certitude. Perhaps first
conjectured on the basis of an insufficient number of particular cases, a general proposition comes to be
more and more securely established by being connected with other truths through chains of inferences. . . .
Hence we can inquire, on the one hand, how we have gradually arrived at a given proposition and, on the
other, how we can finally provide it with the most secure foundation. The first question may have to be
answered differently for different persons; the second is more definite, and the answer to it is connected with
the inner nature of the proposition considered. The most reliable way of carrying out a proof, obviously,
is to follow pure logic, a way that, disregarding the particular characteristics of objects, depends solely on
those laws upon which all knowledge rests. . . . In attempting to comply with this requirement in the
strictest possible way I found the inadequacy of language to be an obstacle; no matter how unwieldy the
expressions I was ready to accept, I was less and less able, as the relations became more and more complex,
to attain the precision that my purpose required. This deficiency led me to the idea of the present
ideography. Its first purpose, therefore, is to provide us with the most reliable test of the validity of a chain
of inferences and to point out every presupposition that tries to sneak in unnoticed, so that its origin can
be investigated.

A monumental effort to apply the logistic methods is the three volume 1929-page
Principia Mathematica by A. N. Whitehead and B. Russell [53]. Its reception in some
quarters was highly favorable as we can see from this review by C. J. Keyser [29].
Logic it is called and logic it is, the logic of propositions and functions and classes and relations, by far the
greatest (not merely the biggest) logic that our planet has produced. . . . Few will read it, but all will feel
its effect, for behind it is the urgence and push of a magnificent past; two thousand five hundred years of
record and yet longer tradition of human endeavor to think aright.

The logic of this treatise can express all of mathematics yet it is formal® It is thus
possible in principle to translate the proof of any mathematical theorem into a
completely formal proof. However, the prospect of actually doing this is quite daunting
because an informal proof of modest length will expand to a formal one of prodigious
size and will require in its production extreme care and detailed knowledge of the
more or less arbitrary conventions of the particular formalism. These tedious details
will in sheer number dominate the interesting mathematical ideas which are the very
raison d'étre of the proof. This state of affairs prompted some to greet Principia with
far less enthusiasm that C. J. Keyser. From Henri Poincaré [38] we read

On the contrary, I find nothing in logistic for the discover but shackles. It does not help us at all in the

direction of conciseness, far from it; and if it requires twenty-seven equations to establish that 1 is a number,
how many will it require to demonstrate a real theorem?

We see now before us the question which motivates this study. Is it in fact possible
to formalize real mathematical argument in a useful way? Will formal proofs of
important theorems always be so long that no one will read them and so tedious that

* Principia Mathematica is not completely formal in the modern sense, but could be made so.
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there will be no point in trying? Will formal proofs ever be more than museum pieces
and curiosities? Or will there be such good systems for writing and displaying formal
proofs that they will become an accepted standard of rigor and will be treasured like
diamonds for their strength? Will they open a realm of mathematics in which the
computer will play a significant role — in checking proofs, giving advice about details,
retrieving relevant facts from libraries of theorems and performing numerous other
chores of a mathematician’s assistant long before machines can help mankind in
general with even the most menial common sense reasoning?

In this paper we will explore these questions. We present a particular approach to
them. We are not in a position where we may present definitive answers, but with this
work as a foundation we intended to continue the exploration.

We begin with a look at relevant theoretical results. Most of these results arose in
the context of studying the Hilbert program as a means of providing a foundation for
mathematics [27]. This program was not in fact concerned with the issue which is
central to us and was dominant in Frege, namely a plan to build and use an
‘ideography’. Hilbert wanted only to study an ideography and he was immensely
pleased that a (nearly) adequate language was at hand with Principia Mathematica.

We will see that because the major theoretical results deal with Hilbert’s program,
they are not as directly relevant to our program as one might naively expect, but they
form a background which must be addressed.

2. Logical Foundations
2.1. PROOFS AS EXPRESSIONS

There is no doubt that we can adequately formalize the concept of a mathematical
sentence: the notion of a formula in the predicate calculus does that. So our attention
focuses on the concept of a proof. The simplest definition, used in the Hilbert
program, from which the term Hilbert style proof arises, is that a proof is a sequence
of formulae each of which is either an axiom or follows by a rule of inference from
previous formulae in the sequence. A typical axiom would be presented as P v 71 P
and a typical rule of inference would be presented as

A, A= B
B

meaning that if 4 and A = B are previous lines in the proof, then B can be added as
a new proved line.

Although the definition of proof is stated in terms of a sequence in analogy to the
way proofs are presented on paper, a somewhat more abstract account arises if we
make the algebraic structure more explicit. To this end we can characterize a proof
as an expression built from constant terms, called axioms, and from unary and binary
operators. For example, if the above rule of modus ponens is represented by the
operator MP, then a proof of B from 4 and 4 = B might be written as MP(a,, a,),
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where a, names a proof of 4 and a, names a proof of 4 = B. In this account, proofs
are treated like algebraic expressions and their individual structure is tree-like. The
class of proofs is still defined inductively.

This concept of proof is simple, and it captures the inductive character of the
concept, but it is not an adequate representation of proofs as they actually occur in
mathematics. This is true for many reasons, and to find an adequate notion of proof
we must unravel the inadequacies one by one and sort out how to assemble a
sufficiently adequate account. That problem will be the principal concern of the next
subsection where we shall examine some new ideas. At this point we bring into the
account the best representation of proofs known from the early work of logicians,
especially of G. Gentzen.

We see in actual mathematics arguments from assumptions. For instance to prove
A = B = A we say ‘assume A4 is true, then we will prove B = 4 . . .". Gentzen [19]
analyzed such arguments and discovered the Calculus of Natural Deduction. It is
interesting that proofs in this calculus can also be presented as algebraic expressions
(inductively defined) if we take as primitive a slightly more general concept than that
of a formula. We take instead the idea of a sequent, as Gentzen called it, which has the

form A;, ..., A,F B in our case and is to be read ‘from the assumptions A4,
., A,, the conclusion B follows’. The meaning is similar to that of the formula
Ay & ... & A, = B, but the syntax of sequents favors a class of operations

(inference rules) which would be awkard to state for formulae. The use of sequents
moves some of the detail of the deductive machinery out of the object language, from
the concept of formula, and into the metalanguage.

Here is how the rules of proof are stated in terms of sequents and operations on
them. The analogue of an axiom scheme is a certain kind of sequent, namely one of
theform 4,, ..., 4, F A,for 1 < i < n. These are the primitive or atomic sequents.
The rule of modus pornens can be expressed in several forms. One form is

LtA L+A=B
L ULt B

where L, and L, are lists of formulae and L, u L, is their ‘union’. Another form is

L,A=B L+G L+ A
Ll’ Ba LZ) Lil_G

Either of these rules can be represented by an expression of the form MP(a, b)
where a and b denote expressions of the appropriate form and MP is a binary
operator on proofs.

In PRL proofs are defined in terms of sequents, but in addition the inference rules
are presented in a top-down style with the goal first and the subgoals under it. Thus
the PRL rule for modus ponens is in fact written as

1.H,,...,nA=18,..,mH,+G byelinn
l.H;,...,m.H,,,}—A
1L.Hy,...,mH,, m+14 m+2.BFG,
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where hypotheses are named by the numbers that procede them. As a proof
expression, we might write an application of this rule as elim(n) (A, h,) where A,
denotes a proof of the first subgoal and 4, a proof of the second. Here is an example
of a proof of the formula 4 & (4 = B) = B:

- A& (A= B)= B by intro
1. A& (A=B) B by elin1
1. A 2. A=B I B by elin 2
1. A, 2. A=B F A byhyp 1
1. A, 2. A=B, 3. B+ B by hyp 3

An algebraic expression for this proof is intro(elim(1) (elim(2) (hyp 1, hyp 3))). This
expression together with the goal formula completely determines the proof as we shall
see later.

2.2. FORMAL VERSUS INFORMAL PROOFS

The idea of a proof in mathematics is exceedingly subtle. Even in a very rigorous style
of mathematics it is quite obvious that what passes for a proof is not the simple kind
of formal algebraic structure outlined in the previous subsection. In this subsection we
want to examine some of the features of informal proofs that significantly distinguish
them from formal proofs as they are now known.

Certain arguments rely heavily on our intuition, perhaps on geometric or physical
intuition or on a deep understanding of natural phenomena. We do not attempt to
treat such arguments here, and we will not call them proofs. We will rule them out by
insisting on the concept of a purely mathematical proof. This is a concept which in
some form we owe to the Greeks.

In the realm of purely mathematical proofs, we can recognize the step by step
character of the formal proofs defined above, and we agree that the formal algebraic
structure is necessary to understand informal proofs. But it is not clear that all proof
concepts can be reduced to these. Anyone with experience with real mathematical
proofs will recognize other kinds of justification, many of them signalled by
phrases like ‘it is obvious’. This justification of a proof step can hide a great deal of
reasoning of various kinds such as:

1. Application of trivial steps of logic, e.g., noticing from (4 = B) = C,
—B = C,and B v —1 B, that C will follow,

2. application of basic rules in some familiar domain such as arithmetic, e.g.,
noticing that 1 < a < b < Imeansa = b = |,

3. recall of some well-known fact and some well-known way to apply that key fact,
e.g., noticing that any number can be uniquely factored into a product of primes,

4. observation that a proof technique just successfully applied to a formula will
apply with minor modifications to the formula at hand.
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We believe that we know how to formalize the methods of reasoning of the first two
kinds. In the first case we use an algorithm which carries out trivial or immediate
reasoning as reported in work on PL/CV [12] or as summarized in Sections 4 and 5
here. In the second case we know of a variety of decision procedures which appear
to capture this style of reasoning.

For categories 3 and 4 we will make proposals in later sections, but unlike for the
first two categories we do not have experimental evidence that we are on the right
track.

One way to assess the effectiveness of the techniques used to formalize proofs is
to measure the length of the complete and checked formal proof as a function of the
length of a carefully written rigorous informal proof. It is widely believed that
existing techniques of formalization are ineffective because the formal proofs are
much longer. But what is not appreciated is that the evidence thus far accumulated
is that there is (at worst) a linear relationship between the two lengths, say cn where
n is the length of the informal proof and c is a constant. In early proof checking
systems such as AUTOMATH [14] the constant ¢ was rather large, around 50. In
systems like PL/CV [12] the constant was smaller because more elaborate techniques
such as decision procedures and automatic rules were used. We will see here that the
method of tactics can lower the constant even more. Indeed, if our ideas for formaliz-
ing the methods of categories 3 and 4 succeed, then we can imagine that formal
machine-checked proofs will actually be shorter than their informal counter parts.

We will see in subsequent sections which ideas are essential to preserving a small
linear relationship between the size of formal and informal proofs. We will also see
how these empirical discoveries were made and will quote from the original reports
of them to emphasize their significance.

2.3. METAMATHEMATICAL RESULTS

Our claim that we can formalize the concept of proof appears to contradict results
from metamathematics such as Godel’s incompleteness theorem [21]. How can we
discuss the size relationship between formal and informal proofs in number theory
when there are statements of number theory which are not provable in any fixed
formal system yet are provable in the metatheory? The answer here is that we consider
only informal proofs in some fixed axiomatic theory, such as Peano arithmetic. When
we expand the informal theory, say by including new axioms, then we correspondingly
produce a new enlarged formal theory.

There are other metamathematical results that seem equally discouraging to our
enterprise. For example, Gddel [22] shows that in second-order number theory there
are proofs of first-order statements that are much shorter than any first-order proof.
Hartmanis [26] has considerably elaborated on this theme by proving that for any
formal system F and any recursive function f there are theorems of length n which we

can prove from outside of F in n steps but whose shortest proofs in F require f(n)
steps. Thus Hartmanis [26] concludes:
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These results show very clearly that we pay a price for formalizing mathematics. In every formalization,
infinite sets of trivial theorems will require very long proofs. Thus we have a very dramatic and quantitative
explanation of why we should not and in practice do not freeze a formation when doing or discussing
mathematics.

What are we to make of these results? In the first place, none of them apply if we
are willing to fix an axiomatic theory and compare formal and informal proofs over
it. Nor do they apply if we are willing to add new axioms to the formal theory if the
need arises and the axioms are widely known and accepted. Either of these positions
is acceptable given the nature of our investigation. But moreover it should be noted
that these negative metamathematical results may apply only to an infinitesimally
small collection of theorems which may not be of interest in the first place. It may also
be the case that by allowing one simple informal metatheory level mechanism for
extending a theory, e.g. adding axioms asserting consistency, these negative results
can be avoided. Whatever the possibilities, it is important to know what the empirical
results are. Do we in fact see in practice any sign of these limitations?

Another criticism of our approach is suggested by results on decision problems. For
example, it is known for any nondeterministic Turing machine recognizing the
theorems of Presburger arithmetic that for every » there are theorems of length » for
which the machine will require 2°” steps. Similar results are known for other extremely
basic theories.

Hartmanis [26] interprets these results as ““Again the limitations of formal methods
and mechanical proof procedures . . . have been pointed out.” De Millo, Lipton and
Perlis [16] say:

Outsiders see mathematics as a cold, formal, logical, mechanical, monolithic process of sheer intellection;
we argue that insofar as it is successful, mathematics is a social, informal, intuitive, organic, human process,
a community project. Within the mathematical community, the view of mathematics as logical and formal
was elaborated by Bertrand Russell and David Hilbert in the first years of this century. They saw
mathematics as proceeding in principle from axioms or hypotheses to theorems by steps, each step easily
justifiable from its predecessors by a strict rule of transformation, the rules of transformation being few and
fixed. The Principia Mathematica was the crowning achievement of the formalists. It was also the deathblow
for the formalist view. There is no contradiction here: Russell did succeed in showing that ordinary working
proofs can be reduced to formal, symbolic deductions. But he failed, in three enormous, taxing volumes,
to get beyond the elementary facts of arithmetic. He showed what can be done in principle and what cannot

be done practice. If the mathematical process were really cne of strict, logical progression, we would still
be counting on our fingers.

Let us see, in light of these discouraging remarks, what has in fact been accomplished.

3. Empirical Resuits

We have seen that the theoretical results concerning the feasibility of adequately
formalizing the concept of proof are not definitive. We have also said that there are
empirical studies which appear to show that such formalization is feasible in the sense
that computer systems have been written which help the user generate and check
formal proofs to such an extent that people have been willing to undertake writing
formal mathematics using them; they have tolerated expansion of the informal text
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by factors between 5 and 50. In this section we take a closer look at these empirical
results by outlining a brief history of a topic we call mechanical proof checking. This
topic blends at the edges with the subject of automatic theorem proving and forms part
of the topic now called automated reasoning in the literature. There is a two volume
series, Automation of Reasoning [45], which gives an adequate historical account and
a survey of the empirical evidence in the subject of automatic theorem proving, so this
brief account will focus on proof checking, which is directly related to our concern with
the formalization of proofs, to the near exclusion of automatic theorem proving.

3.1. EARLY WORK IN AL

Already in 1962 John McCarthy [32] wrote about the possibility of using computers
to check proofs and verify program correctness:

Checking mathematical proofs is potentially one of the most interesting and useful applications of
automatic computers. Computers can check not only the proofs of new mathematical theorems but also
proofs that complex engineering systems and computer programs meet their specifications. Proofs to be
checked by computer may be briefer and easier to write then the informal proofs acceptable to mathema-
ticians. This is because the computer can be asked to do much more work to check each step than a human
is willing to do, and this permits longer and fewer steps. . . . The combination of proof-checking techniques
with proof-finding heuristics will permit mathematicians to try out ideas for proofs that are still quite vague
and may speed up mathematical research.

He went on to examine formal systems that admit brief proofs and outlined a proof
checker to be written in Lisp.

We envisage the use of computer proof-checking in mathematics as follows: The mathematician already
has formalizations of this branch of mathematics and the computer system has stored in it the theorems that
have previously been proved. In addition, there are a number of techniques embodied in programs for
generating proofs. The mathematician expresses his ideas of how a proof may be found by combining these
techniques into a program. The computer carries out the program which may prove the theorem, may
generate information that will guide another try, may indicate an elementary misconception, or may be of
no help whatsoever.

In 1963 Paul Abrahams [1] wrote a Ph.D. thesis at MIT under Marvin Minsky in
which he describes a program to check theorems in Principia Mathematica [53] (about
63 tautologies were actually checked). Abrahams worked out the notion of macro
steps as a way to let the computer build proofs from outlines of methods. He saw
writing formal proofs as equivalent to writing assembly language programs and saw
his accomplishment as steps toward higher level proof languages. It is interesting that
in the same period, 1960-1963, Hao Wang [51] wrote a program based on a decision
procedure for a fragment of the predicate calculus that proved all the pure predicate
calculus theorems of Principia Mathematica, (about 400 of them). This achievement
drew attention to the more ambitious project of automatic theorem proving in
general.

By 1969 there were two major proof checking projects underway at the Stanford
Al Lab supported by John McCarthy; one was FOL (First Order Logic) [52] with

Richard Weyhrauch, and the other was Standford LCF (Logic for Computable
Functions) with Robin Milner. The LCF project is still active an Edinburgh [23],
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Cambridge [36], INRIA and to some extent at Cornell (e.g. this report). We will
confine our remarks to LCF since it is directly relevant to this work. LCF has been
used in various applications. For example, A. Cohn [9] used LCF to prove the
correctness of program transformations and the correctness of a small compiler,
L. Paulson used LCF to verify a unification algorithm [37], S. Sokolowski used LCF
to prove the soundness of a Hoare logic [48], and K. Mulmuley has shown how most
proofs of the existence of inclusive predicates (part of an approach to proving the
equivalence of particular denotational and operational semantics) can be automated
in LCF [34].

Also at Stanford during this period work was begun under P. Suppes to use
proof-checkers in computer aided instruction. The EXCHECK system [49] has been
used in teaching set theory to undergraduates at Stanford, and the relationship
between proof theory and proof checking was explored extensively (c.f., [49] for
articles by G. Kreisel for example).

3.2. THE AUTOMATH PROJECT

In 1967-68 at Eindhoven Technical University, N. G. deBruijn began the
AUTOMATH project [15]. “AUTOMATH is a language which we claim to be
suitable for expressing very large parts of mathematics, in such a way that the
correctness of the mathematical contents is guaranteed as long as the rules of the
grammar are obeyed.”

The AUTOMATH effort concentrated on building a very expressive language in
which any mathematical statement could be stated. L. S. Jutting [28] transcribed an
entire book by Edmund Landau, Grundlagen der Analyse (158 pages), with
AUTOMATH (a major five year effort resulting in several volumes of computer
checked mathematics). The lesson learned was that the job was possible; no
exponential explosion in proof length appeared. Indeed, it seemed that there was a
linear relationship. Here is how deBruijn [15] describes the result:

A very important thing that can be concluded from all writing experiments is the constancy of the loss
factor. The loss factor expresses what we lose in shortness when translating very meticulous ‘ordinary’
mathematics into AUTOMATH. This factor may be very big, something like 10 or 20 (or 50), but it is

constant: it does not increase if we go further in the book. It would not be too hard to push the constant
factor down by efficient abbreviations.

3.3. PROGRAMMING LOGICS

In 1976 at Cornell Univesity we began the PL/CV project which was also concerned
with proof checking. The first phase of the effort concentrated on using fast decision
procedures and techniques from the theory of algorithms [2] and on using the
techniques of programming language (and later synthesizer) design [50] to produce
readable proofs in algorithmic mathematics. We were able to write 1477 lines of

formal constructive mathematics fairly easily culminating in the Fundamental
Theorem of Arithmetic. The proofs were algorithmic and could be efficiently
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executed. Students also wrote numerous isolated proved-programs from a first sem-
ester programming course.

The PL/CV effort confirmed a kind of /linearity hypothesis for elementary proofs.
But because of computer aid in generating these proofs, the loss factor was more like
10 rather than 50.

3.4. SPECTRUM OF METHODS TO AUTOMATE REASONING

One can identify at least three distinct general approaches to automating reasoning.
At one extreme is pure proof checking, as exemplified by AUTOMATH. At the other
extreme is automatic theorem proving, as exemplified by various well-known provers
[6, 5, 46]. In between are those approaches which rely to some extent on proof
checking and on decision procedures. They might be characterized as nonheuristic
theorem proving; a typical example is PL/CV. Some systems use all three strategies.
Let us consider the characteristics of each method and then see how Edinburgh LCF
offers the best of each approach.

Proof Checking:

The pure proof checking methods rely on a very expressive language in which to
capture the abstractions that make rigorous mathematics possible. They require large
libraries of results and use a minimum amount of algorithmic metamathematics. Such
techngiues are thus very safe but also very tedious and unexciting. They tend to use
the computer the way that compilers do.

Theorem Proving:

The automatic theorem provers rely on Godel’s completeness [20] theorem. They
usually code some complete proof search strategy based on the idea that to prove 4
one should look systematically for a model satisfying — 4. Inherent in these methods
is the possibility that the procedure will fail after an investment of considerable
resources. Thus the methods can be very costly, but can discover unexpected results
and can aid in the discovery of a proof. Current methods are based on an inherently
nonconstructive semantics for the first order predicate calculus. A main thrust of the
work relies on Robinson’s resolution methods [42].

Decision Procedures:

The decision procedure technique frequently relies on a deep analysis of theorems and
requires complex algorithms. Algorithms for simple theories such as equality, natural
number arithmetic and rational arithmetic have been quite successful. These

algorithms have good expected computing times. Although a great deal is known
about the asymptotic intractability of many decision problems such as Presburger
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arithmetic and real closed fields, it is not known whether there are useful algorithms
for the naturally occurring statements in these theories. In contrast to the proof
checking methods, these decision procedure techniques rely on complex algorithms
whose correctness must be a major factor in judging the reliability of a system using
them.

LCF Idea:

The Edinburgh L.CF project took the approach that one should build a system which
allows experimentation with a mix of strategies along the spectrum from pure proof
checking to full theorem proving. They state [23] that one of the main aims of the
projects was “‘to provide an interactive metalanguage (ML) for conducting proofs, in
which in principle almost any style can be programmed, but which provides the
greatest possible security against faulty proofs.”

Related Ideas:

Inherent in the LCF approach is a formalization of the metatheory to some extent.
The programming language ML of LCF formalizes the syntax and proof rules of the
object theory. Other schemes have been proposed for incorporating metamathemat-
ical reasoning. For example, Davis & Schwartz [13] proposed completely formalizing
the metamathematics and proving that various extensions of the inference rules are
correct. These can be added as new rules. Boyer and Moore [6] and Weyhrauch [52]
propose a similar scheme and discuss the other options. The PL/CV project [12]
proposed a scheme whereby the metamathematics of one level of the system can be
reflected in the next level.

Of all of these methods we have found the LCF idea easiest to use and most
powerful. We have been persuaded to study our technique in the context of the LCF
approach.

The PRL proof generating environment attempts to achieve a low loss factor by a
combination of techniques similar to those envisioned by McCarthy [32]:

@® a proof editor for ease in generating formulas and entering new notations; the
editor is oriented to a screen with mouse and windows.

@ a top-down logic to support goal oriented proving directly (we call these refinement
logics).

® fast decision procedures for key subtheories: equality, lists, restricted arithmetic.

® representation of the logic in the LCF metalanguage, ML, and use of tactics and
tacticals to provide safe user-defined extensions of the logic along the entire
spectrum from decision procedures to heuristic search.

@ use of functions (called transformation tactics) which convert one proof into
another.
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4. The Object Language and the Metalanguage
4.1. INTRODUCTION.

In this section we introduce the object language and metalanguage of A-PRL. Tt is
fundamental in the study of logic to differentiate between metatheory and object
theory. The object theory is that formal theory which is the subject of the metatheory.
Typically the metatheory is not altogether formal; if it is, then it too has a metatheory
and various questions arise about the relationship between the formal metatheory and
the formal object theory. In our case the object theory is the PRL number and list
theory, called A-PRL. The metatheory contains a formal part called the
metalanguage; this is the ML programming language from LCF.

In the formal metalanguage we can write programs which search for proofs or
transform proofs. This section will explain how that is accomplished. We begin with
a brief account of the object theory, A-PRL, then an account of the metatheory, ML,
and finally an introduction to the concept of a tactic.

4.2. THE OBJECT THEORY, A-PRL

Here we briefly describe the PRL logic to the extent necessary to understand the
detailed structure of proofs. They key novelty here is that PRL is a refinement logic
[4], that is a sequent calculus [19] oriented top-down

Syntax and Proof Rules

The atomic types of the theory are integer and integer list, which are abbreviated int
and list respectively.

The terms of the theory are constants, variables, applications of the form
fle,, ..., e, ore op e, where e, e, are terms, and op is an operator, and listings
lei, .. ., e,] where the ¢; are integer terms.

The constants include the natural numbers, the unary function —, the binary
operators: +, —, %, /, and various atomic functions: mod, hd, tl, and - (the last of
these represents cons in PRL). The list constants are [ ], [n,, . . . , #,] for n, integers.

The function constants have the following types:

mod:int x int - int
hd: list — int
tl: list — list

< rint x list — list

The atomic formulae of the theory are equalities and integer inequalities. The
compound formulaeare 14,4 & B, A v B, A = Bfor 4 and B formuale. The usual
precedence holds among these connectives: —1, & v, =, with = being right
associative. Compound formulae include
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VX, ..., X, type.A4
Ixy, ..., x, type. A

where 4 is a formula and x; are variables. Quantifiers bind more weakly than
connectives, so they have a wide scope.
A sequent has the form

[e] LF,...,nF,F C

where i.F, are numbered formulae, Cis a formula and e is an environment of the form
variable list: int, variable list : list. We adopt a less detailed notation when possible,
usually suppressing the environment and writing S + C for S a numbered sequence
of formuale, or writing S,n.F,S’ F C when we are interested only in the number of
formula F at one occurrence. We also write S, 4, B+ C when we do not care what
numbers are assigned to 4 and B but want to depict their relative order.

For T a type, either int or list, we use [e U x: T] to indicate the new environment
formed by adding x to the appropriate variable list, e.g., [n, y: int, A:list U x:intf] =
[n, y, x:int, A:list).

A proof is an expression of the form

goal by name

D

D
where p, are proofs. The rule names are certain constants such as those listed below.
It is convenient to think of the proof expression in the form f(p,, . . ., p,) where f
is the rule name and ‘goal’ is the range type of f viewed as a function.

The proof rules fall into five categories: (1) predicate calculus rules, (2) arithmetic
rules (taken from PL/VC2 [9]), (3) list rules, (4) rules to reference the library and
defined objects and, (5) rules to invoke tactics built in the metalanguage ML.

Here we illustrate some of these. All rules are presented in refinement style; that is
the conclusion is listed first, thought of as a goal, and the hypotheses are listed under
it, as subgoals. The rule name is listed after the goal. Environments are not shown if
they do not change from goal to subgoals. The rules of inference for A-PRL are
summarized in Figures | and 2. In addition to the rules given, there is an induction rule
for lists.

The 4-PRL proof editor is based upon a window display system. At each stage in
editing a proof, one sequent along with the associated refinement rule and subgoals
(if any) are displayed in a window. To refine a sequent, the user enters the refinement
rule in another window. When finished, the system calculates and displays the
subgoals. Figure 3 and 4 show sample proof editing.
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4.3. THE METALANGUAGE, ML

The language in which we write tactics is the ML programming language [23]. ML is
a functional programming language with three important characteristics which make
it a good language for expressing tactics.

& S + A& B by intro S,n.A&B,S'F C by elimn

1. SFA 1. §,8,A,B+-C

2. S+B
\% S+ Av Bbyintro 1 Su. AV B,S'F C by elim n

1. SHA 1. 5,8 AFC

2. S§,8,B+C
S+ Av B by intro 2

1. S+B
= S+ A= B by intro Sn.A= B,S'}Cbyelimn

1. S,A+ B 1. Sn.A=>B,S'+ A

2. Sn.A= B,S' A B-C

v [e]S - Vz:A.B by intro Sn.Vz:A.B,S'F C by elim n,t

1. [euz:A]S+B 1. 5,Vz:A.B,S",B(t/z)}- C
3 S+ Jz:A.B by intro t [e]S,;n.3y:A.B,5' - C by elim n

1. S+ B(t/z) 1. eUy:A]lS, 8, B+C
Note: B(t/z) stands for B with ¢ substituted for z.
consequence

SECbyseqT

1. ST

2. 5,T+C
hypothesis

Sn.A,S'FAby hypn

false elimination

S,n.false,8' C by elim n

Fig. 1. The Basic Rules of Inference in A-PRL.

The induction rule for integers has the following form when specizlized to a base
case of 0.

(e]S & all z:int.P by ind
1. [eUz:int] S,z<0,P{z+1/z)F P
2. [e] 8+ P(0/z)
3. [eUz:int] S,z>0,P(z~1/z)F P

The variable z cannot already appear in the environment. If it does, the rule can
be called “ind y” where y is a new variable which will be used in the hypotheses
in place of z. Other forms of the rule allow other base cases to be specified.

Fig. 2. The Induction Rule For Integers.
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EDIT THN max

EDIT rule of max
# top
0 intro

I all x,y:int.some m:int.
-m<x & -m<y & (m=xVm=y)

BY <refinement rule>

Fig. 3. Sample proof editing: entering the refinement rule.

© ML has an extensible, polymorphic type discipline with secure types. This allows
type constraints on the arguments and results of functions to be expressed and
enforced. For example, the result of a function may be constrained to be type prootf.

® ML has a mechanism for raising and handling exceptions (in the terminology of
ML, throwing and catching failures). This is a convenient way to incorporate
back-tracking into tactics.

& ML is fully higher-order; functions are objects in the language. This allows tactics
(which are functions) to be combined using combining forms called tacticals, all of
which are written in ML.

In order to understand the example tactics presented below, it is not necessary to
know many of the details of ML. The following summarizes some of the more
important, and less obvious language constructs. Functions in ML are defined as in

let divides x y = ((x/y)*y = x);;

EDIT THN max

# top

0

I all x,y:int.some m:int.
-m<x & —m<y & (m=xVm=y)

BY intro
1# [int x.y)

I some m:int.
-m<x & —m<y & (m=xvm=y)

Fig. 4. Sample proof editing: the result of the refinement.
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This function has type int—int—bool , ie., it maps integers to functions from
integers to boolean values. There is also an explicit abstraction operator, x. The
previous function could have been defined as

let divides = A x . Ay . ((x/y)*y = 0):;

Exceptions are raised using the expression “fail”, and handled (caught) using
“9», The result of evaluating expI?exp2 is the result of evaluating expl, unless a failure
is encountered, in which case it is the result of evaluating exp2. For example, the
following function returns false if y = 0.

let divides x y = (if y = O then fail
else (y*(x/y)=x)
) ? false;;

In fact, because dividing by 0 causes a failure, we could define the same function
with,

let divides x y = (y*(x/y)=x)7false;;

4.4. TACTICS IN ML

The ML concept of tactic is a formalization of the idea of top-down heuristic problem
solving. The method was systematized already by the Greeks, e.g., Papas, and itis a
key element in G. Polya’s heuristic [39]. It also formed the basis for the Logic Theorist
of Newell, Shaw and Simon [35]. Let us hear how tactics were presented in these
various settings.
Polya [39] quotes Pappas (circa 300 BC) as follows:

The so-called Heuristic is, to put it shortly, a special body of doctrine for the use of those who, after having
studied the ordinary Elements, are desirous of acquiring the ability to solve mathematical problems and
is useful for this alone. . . . If we have a ‘problem to prove’ we are required to prove or disprove a clearly
stated theorem A. We do not yet know whether A is true or false, but we derive from A another theorem

B from B another C and so on until we come upon a last theorem L about which we have definite
knowledge.

Polya himself says [39] that

heuristic, or ars inveniendi was the name of a certain branch of study, not clearly circumscribed, belonging
to logic, or to philosophy, or to psychology . . . The aim of heuristic is to study the methods and rules of
discovery and invention.

The Logic Theorist embodied heuristics, as Minsky [33] put it:

The LT (Logic Theory) program is centered around the idea of ‘working backward’ to find a proof. . . . The
heuristic technique of working backwards yields something of a teleological process, and LT is a forerunner
of more complex systems which construct hierarchies of goals and subgoals.

Indeed the concept of goal or problem used in LT fits extremely well in this context.
Minsky [33] says: “abstractly a person is given a problem if he is given a set of possible
solutions, and a test for verifying whether a given element of this set is in fact a
solution to this problem.”
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Finally here is how the LCF designers put the matter [23]:

To make sense of the notion of tactic, we further postulate a binary relation of achievement between events
and goals. Many problem solving situations can be understood as instances of these three notions: goal,
event and achievement. Further we make general type definitions:

tactic = goal -> goal list # validation
validation = event list -> event .

The idea is that a tactic decomposes a goal G into a list of subgoals Gy, . . ., G,. An
event g, achieves a subgoal, say g; achieves G. A validation v will take g; and build an
event o(g,, . . . , g&,) which achieves G. In our setting we think of G as a theorem and
g as its proof. The type-theoretic structure of ML makes it possible to define these
concepts. However, the type structure is not quite rich enough to do this exactly as
we would wish. The full PRL type structure in fact captures exactly the concepts
needed for constructive proof, but we shall not pursue this aspect of the theory in this
paper. (C.f., Implementing Mathematics with the Nuprl Proof Development System

[41])

5. Tactics in A-PRL

In this section, we examine how the general ML tactic mechanism has been special-
ized to PRL. Recall that the generic type of tactics is

tactic: goal — goal list # validation,
validation : event list — event.

What should goal and event correspond to in PRL? It would seem reasonable to
associate goal with the PRL sequent (recall that a sequent consists of a variable
environment, a hypothesis list, and a conclusion) and to associate event with the proof
of a sequent. However, we want tactics to operate on partial proofs. This is a
generalization since a sequent may be viewed as a degenerate partial proof. Because
the tactics will be invoked in an interactive environment, it is desirable to allow them
to return (achieve) incomplete proofs. A tactic will complete as much of a proof as
possible, leaving what is left to be supplied by the user. Thus, for the purpose at hand,
it is desirable to associate event with partial proof. Note that in what follows, the term
proof should not be interpreted as implying that the proof is complete.

A further generalization of tactics is desirable for PRL. Tactics are classified into
two categories: refinement tactics and transformation tactics. These are each
described below.

5.1. REFINEMENT TACTICS

Refinement tactics are like derived rules of inference. The user invokes a refinement
tactic by typing the name of the tactic where a refinement rule is requested by the
proof editor. If the tactic succeeds, then the name of the tactic, as it was typed by the
user, will appear as the refinement rule in the proof. Any subgoals that are not
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completely proved by the tactic will be presented as subgoals of the refinement. As will
be described in detail below, the tactic will have built a refinement proof that connects
the original sequent on which the tactic was invoked and the subgoals resulting from
the tactic. This portion of the proof is hidden from the user, although it is saved for
other uses (such as extraction of theorems). All that is visible to the user is the name
of the tactic and the unproved subgoals.

When a refinement tactic is invoked, the following steps occur:

1 The variable prilgoal is associated with the current sequent viewed as a
degenerate proof. Note that there may be a refinement rule and subgoals below
the sequent, but these are ignored as far as refinement tactics are concerned.

2. The given tactic is applied to prlgoal, resulting in a (possibly empty) list of
unproved subgoals and a validation.

3. The validation is applied to the subgoals.

4. The tactic name is installed as the name of the refinement rule in the proof. The
refinement tree that was produced by the validation in the previous step is stored
in the proof. Any remaining unproved subgoals become subgoals of the refine-
ment step.

The above four steps assume that the tactic terminates without producing an error or
throwing a failure that propagates to the top level. If such an event does occur, then
the error or failure message is reported to the user and the refinement is marked as
bad, precisely as if a primitive refinement rule had failed. See Figure 5.

5.2. TRANSFORMATION TACTICS

Transformation tactics are used to transform one proof into another. The user
invokes a transformation tactic by traversing the proof tree to a node, and supplying

EDIT THM max

# top 1
[int x,y]
I some m:int.
-m<x & -m<y & (m=xVm=y)

BY cases { x<y V -x<y}

1# [int x,y]
1. x<y
I some m:int.
-m<x & -m<y & (m=xVm=y)

2# [int x.y}
1. -=x<y
I some m:int.
~n<x & -m<y & (m=xVm=y)

Fig. 5. The result of refinement using the cases refinement tactic.
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the name of the transformation tactic to be applied. The transformation tactic is
applied to the whole proof below the designated node, including this node. If the
transformation succeeds, then the result of the tactic replaces the previous subproof.
In contrast to refinement tactics, the name of the trasnformation tactic is not included
in the proof, and the result of the tactic explicitly becomes the subproof. Transform-
ation tactics may be used, for example, to complete and expand unfinished proofs, to
produce new proofs that are in some way analogous to a given proof, or to perform
various analyses and optimizations on proofs. When a transformation tactic is
invoked, the following occur:

1. The ML variable prigoalis associated with the proof below, and including the
current sequent.

2. The specified transformation tactic is applied to prlgoal, resulting in a (possibly
empty) list of subgoals and a validation.

3. The validation is applied to the list of subgoals.

4. The proof that is the result of the previous step is grafted into the original proof
below the sequent.

The key difference between refinement and transformation tactics is that trans-
formation tactics are allowed to examine the subproof that is below the current node,
whereas refinement tactics are not. The result of a transformation tactic will, in
general, depend upon the result of the examination. Since most tactics do not depend
on the subproof below the designated node, they may be used either as a trans-
formation tactic or a refinement tactic. The main implementation difference between
tactics and transformation tactics is how the result of the tactic is used. In the former,
the actual proof constructed by the tactic is hidden from the user, and only

EDIT THN max

# top 1
[int x.7y]
I some m:int.
-m<x & -m<y & (m=xVm=y)

BY seq x<y V —x<y

1* (int x,y]
F x<0 Vv - x<0

2# [int x,y]
1. x<0 VvV - x<0
I some m:int.
-n<x & -m<y & (m=xVm=y)

Fig. 6. The result of applying “cases {x<0 V —x<0}” as a transformation.
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the remaining unproved subgoals are displayed. In the latter, the result is explicitly
placed in the proof. In fact, since a refinement tactic can not examine the subproof,
any refinement tactic may be used as a transformation tactic. Appendix A contains
a summary of the library tactics in A-PRL. The reader may wish to read this before
proceeding.

5.3. THE TACTIC LIBRARY

When A-PRL is started, a library of predefined tactics is available to the user. Since this
library does not, and could not, contain all the tactics a user might like, two facilities
have been included in PRL that allow the user to define and experiment with his own
tactics. First, ML may be used interactivley within PRL. This allows the user to
experiment with and to debug tactics, and to make (temporary) changes to the ML
state. Second, PRL library objects may be created that contain ML expressions. This
allows the user to store tactic definitions between A-PRL sessions.

There is a distinguished refinement tactic defined in the tactic library called the
auto_tactic. The auto_tactic is invoked automatically on the result of each primitive
refinement step. This tactic is intended to complete any simple remaining subgoals
without further effort on the part of the user. There is a default auto_tactic, but any
refinement tactic may be designated by the user as the auto_tactic.

5.4. IMPLEMENTING TACTICS FOR PRL

Tactics are implemented using the dialect of the ML programming language devel-
oped as part of the Cambridge L.CF project. (Tactics were first implemented in PRL
using the original ML implementation from the University of Edinburgh and later
reimplemented using Cambridge ML.) The ML language was intended to be the
metalanguage of ‘PPLAMBDA’, the logic of LCF. One of the first tasks in implement-
ing tactics for PRL was to change ML so that it is the metalanguage of
the 2-PRL logic.

In changing the object language of ML, all references to PPLAMBDA and oper-
ators on objects of the types of PPLAMBDA were removed. In their place were
substituted primitive types of PRL objects and operations on these types as described
below. The base types of PRL that are implemented in ML are described in Figure
7. These types should not be confused with the base types of the A-PRL logic (integers
and lists of integers).

For the types of ternm, formula,rule and binding an associated collection of predi-
cates, constructors, and destructors have been provided. The predicates on the type
formula, for example, allow the kind of a formula to be determined. An example of
a predicate on formulae is is_universal, which returns true if and only if the formula
it is applied to is universally quantified. The constructors and destructors for each of
the types allow new objects of the types to be synthesized and existing objects of the
type to be divided into component parts. Appendix B contains a complete list of all
primitive extensions to ML that have been made in implementing PRL tactics.
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proof: Type of partial PRL proofs. Proofs consist of proofs nodes. Each node
represents one refinement step. A node consists of a sequent, a refinement
rule, and proofs of the children of the refinement, where the lattter two will
be missing in some leaf nodes of an incomplete proof.

rule: Type of PRL refinement rules.

binding: Type of PRL bindings. A binding associates a variabie {in the environ-
ment of a sequent) with a base type of integer or list of integers.

formula: Logical formulae of the A-PRL.

term: Expressions over the PRL base types.

Fig. 7. Summary of the primitive object language types for ML.

The rule constructors in ML do not correspond precisely to the rules in PRL.
Refinement rules in PRL are usually entered as “intro”, “elim”, “hyp”, etc. Strictly
speaking, the notation “intro”refers not to a single refinement rule, but to a collection
of introduction refinement rules. Normally the context of the proof is used to
disambiguate the intended introduction rule at the time the rule is applied to a
sequent. There is a similar ambiguity with the other names of the refinement rules. In
addition to this ambiguity, the various sorts of the rules require different additional
arguments. For example, to apply an intre rule to a conjunctive formula, no further
information is required, but to apply intro to a disjunctive formula requires that one
of the disjuncts be designated. Because rules in ML may exist independently of the
proof context that allows the particular kind of rule to be determined, and because
functions in ML are required to have a fixed number of arguments, the rule constructors
have been sub-divided beyond the ambiguous classes of intro, elim, etc., that are
normally visible to the PRL user. For instance, the function intro in ML, which takes
no arguments, constructs an intro rule which will be valid when applied to any sequent
that does not have a conclusion that is a disjunction or is quantified. For the latter,
there are three rule constructors, or_intro, all_intro and some_intro, each of which
require additional arguments. There is a similar complication with the structure of the
elimination rules. See Appendix B for the complete list of ML refinement rule
constructors.

For the ML type of proot, a complement of destructors are available that allow the
conclusion, hypotheses, environment, rule and children to be extracted from a proof.
There is only one primitive function in ML that constructs new proof objects, that is
refine. The function refine maps rules into tactics, and forms the basis of all tactics.
When supplied with an argument rule and proof, refine performs, in effect, one
refinement step upon the sequent of the proof using the given rule. The result of this
is the typical tactic result structure of a list of subgoals paired with a validation. The
list of subgoals is the list of children (logically sequents, but represented as degenerate
proofs) resulting from the refinement of the sequent with the rule.

The function refine is the representation of the actual A-PRL logic in ML. Every
primitive refinement step accomplished by a tactic will be performed by applying
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let refine rule = ) proof .
let children = deduce_children rule (sequent proof) in
let validation =
A achievement .
make_proof (sequent{(proof), rule, achievement) in
(children, validation);;

where sequent extracts the sequent from a proof, and make_proof constructs a
new proof node given a sequent, rule and children. N.B., the fuction make_proof
is not available directly to the tactic writer.

Fig. 8. An abstract implementation of the funtion refine.

refine. The subgoals are calculated by actually calling the PRL system’s refinement
routine, deduce_children, with the proof and the rule* Constructing the validation,
an ML function, is more complicated. The purpose of the validation, given achieve-
ments of the subgoals, is to produce an achievement of the goal. The validation,
hence, constructs a new proof node where the sequent is the sequent of the original
goal, the refinement rule is the rule supplied as an argument to refine, and the children
are the events achieving (partial proofs) of the subgoals. See Figure 8 for a possible
implementation of refine.

If deduce_children is applied to a sequent that can not legally be refined with the
rule, then deduce_children will fail (in sense of ML failures), including the text of the
reason for the failure as part of the failure.

5.5. VALIDATIONS

Validations are a mechanism whereby the actual construction of proof nodes is
delayed until execution of the tactic is complete. The tactic works top-down, but the
resulting proof is constructed by the validation bottom-up. This is particularly desir-
able in light of the possibility that part or all of a result may be abandoned when a
tactic fails. Since no node that is not actually included in the final result is constructed
until the tactic terminates, there is no need to “‘undo’ the work of a failed tactic. The
validations produced by retine may be thought of as alternative representations of
proof nodes where the children have not yet been entered into the node. Compound
validations produced by tacticals from these simple validations are, in this view,
alternative representations of proofs.

It is of fundamental importance that the resultant proof of a tactic is a correct proof
in the A-PRL logic. In particular, it should be the case that any theorem proved by
a tactic could be proved without the tactic using only the primitive inference rules of
the logic. The strong type structure of the ML language contributes to the enforce-
ment of this property, as does the fact that refine is the only constructor for the type
proof . Furthermore, the calculations of the subgoals in the function refine by

* The function deduce_children is a lisp function — part of the implementation of 1-PRL.
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reference to the PRL refinement function, deduce_children, guarantees that the
subgoals of a refinement are correct, assuming the implementation of the logic is.

The only place where new proof nodes are constructed in tactics is in the validations
produced by refine. Guaranteeing that the nodes produced by validations represent
correct usage of the inference rules will therefore guarantee that the proof resulting
from any tactic is logically correct. To know that the inference steps represented by the
validations are correct, it is necessary to verify that the list of achievements supplied
to the validation correspond to the children of the goal under the refinement rule.
Figure 9 gives an improved version of refine that realizes this; the actual implemen-
tation of refine differs in that there is additional bookkeeping information at each
proof node that must be kept up to date. With this modification of refine, one may
prove the following.

THEOREM 1. The result of a tactic (either transformation or refinement) is a valid
A-PRL proof.[]

Thus a tactic may fail to return a complete result, but can never return a (logically)
incorrect result.

5.6. EQUALITY OF THE OBJECT LANGUAGE TYPES

In PRL, there is a flexible syntax for denoting terms and formuale; every term or
formula can be presented in any number of ways by using a syntax-extension
mechanism, defs. This fact complicates the implementation of the equality predicate,
=, for terms and formulae. In A-PRL, terms are considered equal if they denote the
same object, and formulae are considered equal if they are a-convertible to the same
formula. To understand the difficulty that this presents, it is necessary to understand
how equality is implemented in ML.

One of the advantages of the system of polymorphic typing employed in ML is that
all type checking is completed before execution (even when interpreted, ML code
is compiled into LISP code before execution). As a result, all type information may
be discarded before execution proceeds. For all types that are normally primitive in

let refine rule = A proof .
let children = deduce.children rule (sequent proof) in
let validation =
A achievement .
if (sequents children) = (sequents achievement) then
make_proof (sequent proof, rule, achievement)
else
failwith ‘Wrong achievements for subgoals.’ in
(children, validation);;

where sequents applied to a list of proofs produces a list of the sequents of the
proofs.

Fig. 9. An improved abstract implementation of refine.
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ML, the equality predicate is the same; two objects are equal if the are intensionally
(i.e., structurally) equal.

If we did not change the definition of equality for terms and formulae, then
polymorphic functions that used the equality predicate could give incorrect results if
applied to terms or formulae. For example, the standard list membership predicate,
member, if used for a list of type formula would return true only if the formula is
identical (rather than an a-variant) of a formula in the list.

In order to determine when the equality predicate is being applied to objects that
are of type term or formula, it was necessary to introduce a limited amount of type
information for use at execution time. This was accomplished by tagging the represen-
tation of terms and formulae. The equality predicate was altered to check objects for
the tag, and apply the appropriate sort of equality test. The tags were chosen in such
a way that no object could accidentally happen to contain the tags. The inclusion of
type information at execution time is violently opposed to the philosophy of the ML
polymorphic type system, but unfortunately was necessary.

5.7. ENTERING Ai-PRL TERMS AND FORMULAE IN ML

To allow the use of constant terms and formulae in ML expressions, a special form
of quotation has been introduced. Entering terms or formulae enclosed by braces will
cause them to be parsed and assigned a type (term or formula ) by the PRL parser.
To facilitate the syntactic extensions of PRL, lexical analysis of ML expressions
occurs in two phases. In the first phase, the PRL lexical analyzer expands syntax
macros. In the second phase, the ML lexemes are determined by the ML lexical
analyzer. When parsing a term or formula, i.e., when scanning input between braces,
only the PRL lexical analyzer determines the lexemes. This arrangment allows the
syntactic extension facilities of PRL to be used for ML expressions stored in library
objects, and allows these extensions to be used when entering the names of tactics
while editing a proof.

6. Writing Tactics
6.1. WRITING SIMPLE TACTICS

We now examine how some sample tactics are written. The basis of all tactics are calls
to the function refine. The following tactic, when applied to a goal that is existen-
tially quantified, supplies the witness O for the existentially quantified variable.

let zero_witness = refine (some_intro [{0}]) proof;;

There are a couple of features of this definition that may require comment. First, the
witness for the existential variable must be a PRL term, thus the occurence of ‘{0}’.
The constructor for the existential introduction rule, some_intro, requires a list of
witnesses that corresponds to the list of variables quantified by a single existential
quantifier. Thus it is necessary to enclose the 0 term in square brackets; square
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brackets are the list delimiters in ML. Because refine maps rules to tactics,
zero.witness will correctly have type tactic . To make explicit the fact that
zero_witness is a mapping, we might have given the following equivalent definition.

let zero witness proof = refine (some_intro [{0}]) proof;;

If this tactic is applied to a goal that is not existentially quantified, then the application
of refine will fail, and since the failure is not caught in zero_witness, the tactic itself
will fail. A parameterized generalization of the zero_witmess tactic could be
expressed as

let witness witness_term = refine (some_intro [witness_term]);;

This tactic would be invoked during proof editing by typing ‘witness’ followed by a
term, for example, ‘ witness {x + 3}’. Because it does not depend upon the exist-
ing children of the goal, witness could be employed as either a refinement or
transformation tactic.

6.2. COMBINING TACTICS USING TACTICALS

Tacticals are ML functions that map tactics to tactics. By using tacticals, existing
tactics may be combined or changed to form new tactics. If we wanted, for example,
the witness tactic to provide a witness for an existentially quantified variable, and
then try to complete the proof by simple reasoning, we could combine it with the
immediate tactics using the THEN tactical. The immediate tactic is a tactic for proving
simple sequents and is provided as part of the library of tactics. The THEN tactical
applies the left-hand tactic and then applies the right-hand tactic to each subgoal of
the first application.

let witness witness. term =

(refine (some_intro[witness.term])) THEN immediate;;

The next sample tactic is skolen. This tactic takes a term as an argument and refines
the goal until no more universally quantified variables are proceeding the conclusion.
It then assumes that the formula is an existential one, and refines using some-intro
with the given term. Thus the argument term should be thought of as a function of
the universally quantified variables proceeding the first existential quantifier in the
formula and any other variables free in the environment of the formula. The argument
term is a generalized Skolem function. With the above definition of witness, the tactic
skolem might be defined as

let skolem witness_term =
universal THEN (witness witness_term) THEN immediate:;
The THENL tactical is a variant of THEN which accepts a list of tactics as the second
argument rather than a single tactic. It applies to each child of the first tactic (i.e., the

left argument) the corresponding tactic in the list of tactics. In addition to THEN and
THENL, two other tacticals are of general usefulness: REPEAT and ORELSE . The tactical
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REPEAT will repeatedly apply a tactic until the tactic fails. That is, the tactic is applied
to the goal of the argument proof, and then to the children produced by the tactic,
and so on. The REPEAT tactical will catch all failures of the argument tactic, and can
not generate a failure. For example,

let repeat_intro = REPEAT (refime intro):;

will perform (simple) introduction on the proof until it no longer applies (i.e., until
the goal of one of the introduced refinements is atomic, or is a disjunctive or
quantified formula). If repeat_introis applied to a goal that can not be refined using
simple introduction, then the tactic is equivalent to IDTAC, the identity tactic. The
ORELSE tactical takes two tactics as arguments. It produces a tactic that applies the
first tactic to a proof, and if that tactic fails, applies the second tactic. Thus,

let goal_simplify = REPEAT ((refire intro) ORELSE (refine arith)).;

will repeatedly try to refine using the introduction rule, and if that fails, then it will
apply the decision procedure arith.

The achievement relation between goals and events used in PRL tactics is quite
weak; a proof achieves a goal if the sequent of the proof is equal to the sequent of the
goal. It is occasionally desirable to have a stronger form of achievement. For example,
we might wish to require that a tactic completely prove a goal, or we may wish to
require that a tactic makes some progress towards proving the goal. We may
implement tactics with these properties using the tacticals COMPLETE and PROGRESS .
Let tac be any tactic. Then

let finish = CONPLETE tac;;

is a tactic that will either completely prove the goal or will fail. The COMPLETE tactical
is implemented by checking that the result of the tactic applied to the goal has an
empty subgoal list.

let COMPLETE tactic =
A goal . if null (first event)
then event
else fail
where event = tactic goal;;

The PROGRESS tactical is implemented by verifying that the result of the argument
tactic applied to a goal does not result in a subgoal list that contains exactly the
original goal. The resulting tactic will fail unless the argument tactic performed at
least one refinement step.
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let PROGRESS tactic =
A goal . let result = tactic goal in
if (first result) = [goal]
then fail
else result;;

A possible implementation of ORELSE is

let ORELSE tactici tactic2 goal =
(tactici goal) ? (tactic2 goal);;

However, a better implementation will take account of the fact that the first tactic may
not fail, but may fail to make progress, in which case the second tactic should be
applied.

let ORELSE tacticl tactic2 goal =
(PROGRESS tacticl goal) 7 (tactic2 goal);;

The REPEAT tactical may be implemented in terms of the other tacticals. It is crucial
that progress be required of the argument tactic here; otherwise we could produce a
tactic that indefinintely does nothing.

letrec REPEAT tactic =
((PROGRESS tactic) THEN (REPEAT tactic)) ORELSE IDTAC;;

The THEN tactical is conceptually just as easy to implement, but requires a bit of list
processing in combining the validations to make a new validation. IDTAC may be
defined as

let IDTAC tactic = X goal . ([goall, head);;

6.3. VALIDITY AND STRONG VALIDITY

Two important properties of tactics first identified by Gordon, Milner, and
Wadsworth [23] are validity and strong validity. Their original definitions were based
upon the relation achieves. Recall that in the PRL context, a proof p’ achieves a proof
pif the sequents of p and p” are equal. This is quite a weak relation. Notice for example
that any proof achieves itself. To get defintions of validity and strong validity that are
analogous to the ones intended by Godon, Milner, and Wadsworth, we define a
stronger form of achievement: completely achieves.

DEFINITION: We say that a proof p completely achieves a proof p if p achieves p and
P is a complete proof.

We can now define validity and strong validity. These definitions differ from those in
[23] in the replacement of the achievement relation with complete achievement and in
the specialization of vocabulary to the PRL context.
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DEFINITION: A tactic T is said to be valid if for every proof p, if

T(p) = [Pla e ’pn]a v

then for any proofs p,, . . ., p,, that completely achieve p;, . . ., p,, the
proof o[ p,, . . . , p,] completely achieves p.

DEFINITION: A tactic 7 is said to be strongly valid if T is valid and for every proof
p with a provable sequent, if

T(p) = [pis---sPu @

then p,, . . ., p, are completely achievable.

In a general context, a tactic need be neither valid nor strongly valid. One would
like all tactics to be valid. However, strong validity is too restrictive since many tactics
which employ heuristics or are intended for use only on particular kinds of goals are
not strongly valid, but are still quite useful. For example, the skolen tactic described
above is not strongly valid.

In a general context it is difficult to enforce a requirement that all tactics be valid
[23]. In A-PRL it is difficult to write invalid tactics, and as we describe below we could
enforce the validity of all tactics. The refinement logic of A-PRL ensures that if the
subgoals of a sequent refined by a primitive refinement rule are completely provable,
then the sequent is completely provable. By construction of validations in refine, we
have the following:

THEOREM 2. For every rule r,(retine r) is a valid tactic. |

Furthermore, as noted in [23], the tacticals preserve validity (the results of PROGRESS
and COMPLETE must be valid since these tacticals do not change the validation or
subgoals of the argument tactic).

THEOREM 3. If T, and T, are valid tactics, and L is a list of valid tactics, then Ty
THEN T,, T, ORELSE Ty REPEAT T}, T, THENL L, PROGRESS T, , and CONPLETE T, are valid
tactics. [

Thus all tactics in A-PRL are valid so long as the validations are constructed using
refine and the above tacticals, and the validations are not separated from the associ-
ated subgoals. One can easily imagine using the ML type structure to represent the
resultant type of a tactic (proof list # validation) so that validations cannot be
manipulated except by the primitive ML functions: refine, the tacticals given #bive
and a function for applying a validation to the associated subgoals. This would
that all tactics in PRL were valid.
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6.4. A LARGER EXAMPLE TACTIC

Let us now examine how the tactic imnediate is implemented. The tactic is built from
a dozen simple tactics, each of which will correctly operate on a very limited set of
goals. The combination, however, works for a wide class of goals. We will show how
to define a representative subset of the component tactics from which immediate is
defined, and then show the definition of immediate. Each of the component tactics will
refine with a particular refinement rule; thus there is a tactic for and-introduction, one
for or-introduction, one for hypothesis, and so forth. The tactic for and-introduction
is
let and intro_tac goal =
if is.conjunction (conclusion goal)
then refine intro goal
else fail;;

This tactic first checks that the goal is a conjunction because the introduction rule will
succeed on many other kinds of goals, and we only want to refine conjunctive
formulae in this tactic. The function conclusien extracts the conclusion from a proof,
and the predicate is.conjunction returns true when applied to a formula if the
formula is a conjunction. It should be apparent from the context what these sorts of
functions mean in the following; see Appendix B for their meaning if necessary.

We want a tactic that will scan the list of hypotheses and if it finds a hypothesis,
h, that equals the conclusion, refine the goal with the hypothesis rule using the
hypothesis # as a witness. The tactic for hypothesis must find a formula in the
hypothesis set, and then perform a hypothesis refinement. This is complicated slightly
by the fact that the hypothesis rule requires the number of the hypothesis that matches
the goal. We start the search with hypothesis number 1.

let hyp_tac goal =
let try_hyp hyp_list hyp_num goal =

if null hyp_list
then fail

else if (head hyp_list) = (conclusion goal)
then refine (hyp hyp_num) goal

else
try_hyp (tail hyp_list) hyp_num+i goal in

try_hyp (hypotheses goal) 1 goal;;

In fact, hyp_tac is not implemented quite like this. This control structure (scanning
through each hypothesis looking for a particular property of the hypothesis, and then
performing a refinement if the property holds) occurs frequently enough that a special
functional, map_hyp, has been written that will take a tactic-like function, and apply
this function on each hypothesis until one of the applications succeeds. The actual
implementation of hyp_tac employs this functional.

The tactic or_intro_tac will perform or-introduction if the goal is a disjunction.
This is not as simple as and-introduction since or-introduction refinements require
that a disjunct of the disjunctive formula be designated, and that the disjunct be
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proved as a subgoal. In order to determine which is the proper disjunct to designate,
this tactic tries the first disjunct first. If it is unable to completely prove the subgoal
of this refinement, then it tries the second disjunct® If it is unable to completely prove
the subgoal of this refinement, the tactic fails. To prove the subgoals, or_intro_tac
will recursively call imnediate .

let or_intro_tac goal =
if is_disjunction (conclusion goal) then
((refine (or_intro 1) goal) THEN (CONPLETE immediate))
ORELSE
((retine (or_intro 2) goal) THEN (COMPLETE immediate))
else
fail;;

The tactic that performs implication-elimination is similar. It scans the hypothesis
list until it finds an implication. It then refines using implication-elimination, designat-
ing that hypothesis. It then applies inmediate to prove the first subgoal, the
antecedent of the implication, and fails unless it can completely prove it. If it succeeds,
then it tries immediate on the second subgoal, but does not require that this part of
the subproof be complete. The tactic for or-elimination refinement is similar, but
requires that the proof be complete below the or-elimination refinement; otherwise,
proofs may be split on disjunctive hypotheses that are irrelevant to the conclusion
currently under consideration, forcing a duplication of proof reasoning below this
refinement.

The remaining introduction tactics used in immediate are analogous to
and_intro_tac. Finally, there is a tactic for the division axiom that will try refinement
using this axiom, and then requires that the proof be complete below the refinement.
With all of these defined, immediate could be defined as

let immediate = REPEAT ( hyp_tac
ORELSE true_intro_tac
ORELSE false_elim_tac
ORELSE (refine arith)
ORELSE (refine equality)
ORELSE and_elim_tac
ORELSE implication_intro_tac
ORELSE not_intro_tac
ORELSE division_axiom_tac
ORELSE and_intro_tac
ORELSE implication_elim_tac
ORELSE or_elim_tac
)i
The order of the subtactics in innediate is quite important since it determines the
order in which refinement rules will be applied. The rules used by immediate may be

*This is a simplification since disjunctions in A-PRL may have arbitrarily many disjuncts.
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roughly categorized by the number of subgoals that are produced by refining with the
rule. The first tactics in the above list are the tactics that correspond to rules that do

not produce subgoals. This includes hypothesis, true-introduction, false-elimination,
and the decision procedures arith and equality. Obviously, whenever one of these
rules can apply, it should be applied since it will completely prove the goal. Next come
the tactics that correspond to rules that produce only one subgoal, and-elimination
and implication-introduction. Finally come the tactics that correspond to rules that
may produce more than one subgoal. The point of the latter part of the ordering is
that the branching factor of the proof should be kept as low as possible for as long
as possible. Of course, all of this is heuristic, and it is possible to find goals for which
other orderings would perform better.

6.5. THE QUANTIFIER TACTIC

The inmediate tactic is applicable only to unquantified formulae. The next example
tactic is designed to prove certain quantified formulae. It is common in A-PRL to have
theorems of the form Vo, . .. Vou,.3w.P(v,, . . ., v,, w). If this theorem were to be
proved without using induction, then it would be necessary to apply the introduction
rule » times, once for each universally quantified variable. The following tactic will
repeatedly refine a proof until the conclusion is not universally quantified.

letrec universal proof =
let goal = conclusion (proof) in
if is_universal goal then
(refine (all_intro (quantified_vars goal)) THEN universal)
proof
else
IDTAC proof;;

This simple tactic is characteristic of may useful tactics. These tactics provide a level
of abstraction above the level of the primitive rule of inference, allowing proofs to be
expressed and presented concisely.

As another example tactic, we examine the quantifier tactic. This tactic searches
the hypothesis with a quantifier structure that is suitably related to the quantifier
structure of the conclusion. It then constructs a refinement that proves how they are
related. Since the implementation details of this tactic are routine, we present a
high-level description.

When is the prefix*of a hypothesis suitably related to the prefix of the conclusion?
Consider the situation where the hypothesis and the conclusion each have just two
quantified variables. There are four cases to consider. Schematically, they are:

1.Vx.Vy.P(x, y) F Vy.¥x.Q(x, y)

2.3x3y.P(x, y) F 3y.3x.Q(x, )

*By prefix we mean the maximum list of quantified variables prefixing a formula along with some indication
for each variable whether it is existentially or universally quantified.
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3. 3x.Vy. P(x, y) F Vy.3x.Q(x, »)

4.¥x3y.P(x, y) F Ip.Vx.0(x, »)

The first three cases are valid in the A-PRL logic, but the fourth is not in general. This
observation may be used to prove the following theorem:

THEOREM 4. Let H, C be formulae with prefixes Py, P and matrices My, Mc. The
prefix P is said to be a legal permutation of Py if and only if

1. P is a permutation of Py, and .

2. For every universally quantified variable a in Fc, and every existentially quantified
variable e in P., if a precedes e in Py then a precedes e in Pe.

If P, is a legal permutation of Pyand H,, By, H, b B.is provable, then H,, H, H, - C
is provable. |

The quantifier tactic is roughly based upon this theorem. The result of an appli-
cation of this tactic is one unproved subgoal: to prove that the matrix of the con-
clusion follows from the hypotheses. Once it has been verified that the prefix of a
conclusion is a legal permutation of the prefix of one of the hypotheses, the refine-
ment is constructed by applying the following four rules repeatedly (in order) until no
rule applies.

1. If the conclusion is universally quantified, refine using universal-introduction.

2. If the hypotheses is existentially quantified, refine using some-elimination.

3. If the hypothesis is universally quantified, refine using all-elimination with the
same variable name.

4. If the conclusion is existentially quantified, refine using some-introduction with
the same variable name.

The usefulness of the quantifier tactics depends upon the following heuristic: if  *
the prefix of the conclusion is a legal permutation of the prefix of a hypothesis, then
the theorem may be proved by starting with the simple quantifer manipulations given
above. In general, this is a good heuristic. There are, however, cases where the
quantifier tactic will procede to prove tangential facts that will prevent a direct
proof of the complete theorem. For example, quantifier may construct a tangential
refinement if the conclusion must be proved by induction, or if the prefix of the
conclusion is a valid permutation of more than one hypothesis prefix. That is, the
tactic quantifier is not strongly valid. In combining quantitier with other tactics,
this problem may be avoided by employing the CONPLETE tactical. The following tactic
combines inmediate, universal and quantifier to form a powerful, but still simple
tactic.
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letrec trivial =
REPEAT
( immediate ORELSE
((PROGRESS quantifier) THEN (COMPLETE trivial)) ORELSE
universal

)i

6.6. EXAMPLE TRANSFORMATION TACTICS

As a final example we examine a pair of transformation tactics, mark and copy, that
can be used to copy proofs. To use these the user locates the proof he wants to copy
and invokes mark as a transformation tactic. He then locates the goal where he wants
the proof inserted, and invokes copy as a transformation tactic. The application of
mark does not change the proof and records the proof (in the ML state) so that it is
available when the copy tactic is used. Note that the goal of the proof where the copied
proof is inserted is not, and in fact cannot, be changed by the copy tactic.

The mark tactic is defined as follows. The variable saved_proof is a reference
variable of type proof.

let mark goal proof =

(saved proof := goal proof;
IDTAC goal_proof
)i

The foundation of the copy tactic is a function that makes a verbatim copy of the
saved proof. This is accomplished by recursively traversing the saved proof and
refining using the refinement rule of the saved proof. The following is a first approxi-
mation to the copy tactic.

letrec copy_pattern pattern goal =
(refine (refinement pattern)
THENL (map copy_pattern (children patterm))

) goal;;
let copy goal = copy pattern saved proof goal;;

This version of copy will fail if the saved proof is incomplete (since the selector
refinement fails if applied to a proof without a refinement rule) To correct this
deficiency, we define a predicate is_refined and change copy-pattera to apply
immediate where there is no refinement in the saved proof.
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letrec copy_pattern pattern goal =
if is_refined pattern then
(refine (refinement pattern)
THENL (map copy.pattern (children pattern))
) goal
else
immediate goal;;

With this as a basis, any number of more general proof copying tactics can be defined.
For example, the following version of copy looks up the actual formula being refer-
enced in elimination rules (rather than just the index in the hypothesis list) and locates
the corresponding hypothesis in the context where the proof is being inserted.
Further, if one of the refinements from the pattern fails in the new context, then
immediate is tried (rather than the whole copy failing).

letrec copy.pattern pattern goal =

it is refined pattern then

(refine (adjust_elim rules pattern goal)
THENL (map copy_pattern (children pattern))

ORELSE immediate
) goal

else
immediate goal;;

The function adjust_elim rules checks if the refinement is an elimination rule. If
not, it returns the value of the rule unchanged. If it is an elimination rule, it looks up
the hypothesis in the pattern indexed by the rule and finds the index of an equal
hypothesis in the hypothesis set of the goal. In this case the value returned is the old
elimination rule with the index changed to be the index in the hypothesis set of the
goal rather than the pattern.

The tactics mark and copy illustrate the usefulness of transformation tactics and
how transformation tactics can be used to extend the A-PRL proof editor. The result
of the copy is almost a verbatim copy of the original proof. However, one could
imagine writing more general tactics to construct proofs by analogy to existing proofs.

7. Experience and Conclusions
7.1. RELATION TO LCF

During the design of A-PRL we chose to integrate it with ML because we believed that
the Edinburgh LCF approach to automating reasoning was especially compatible
with our design principles. For instance, the PRL logic is oriented to top-down
development, as are LCF tactics. In addition PRL is essentially a functional program-
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ming language, as is ML. Our previous experience with LCF convinced us that the
tactic concept was not only viable and flexible, but that it would be feasible to
incorporate into our implementation.

Despite the basic compatibility between PRL and Edinburgh LCF, there are some
important differences, some of detail and some of conception. In matters of detail,
PRL relies on a structured-editor, window system and mouse to write proofs and
tactics. Also the PRL rules themselves can be directly expressed as basic tactics, that
is the refine tactic, vis-a-vis LCF in which rules are stated in the conventional
bottom-up style and tactics are written to invert them.

The most striking conceptual difference between PRL and LCF is that in LCF there
are no proof objects whereas in PRL they are central. Explicit proofs (as opposed
to knowing that a formula is a theorem, as in LCF) are required in PRL since
executable code, programs, are to be extracted from completed A-PRL proofs. See
Bates [4], Sasaki [43] for a description of the program extraction process. In addition,
the fact that proofs are objects in PRL means that it is possible to define transform-
ation tactics. The inclusion of a data-type for proofs alse allows the interleaved use
of refinement tactics, transformation tactics, and primitive refinement steps without
the need to compose several tactics into one to prove a theorem. Refinement tactics
are similar to tactics in LCF, but because of the differences in the environment are
applied in different ways.

The special nature of the A-PRL logic as a refinement logic and the implementation
of tactics based upon the PRL deductive function, deduce_children, guarantee that all
reasonably constructed tactics (those that do not separate subgoals from the corre-
sponding validations) will be valid in the LCF sense.

7.2. EXPERIENCE

We have come to rely more and more heavily on the tactic mechanism of 1-PRL
because it has proved to be so successful for a broad class of very simple proof
techngiues. A number of users have written several small special purpose tactics, and
we have written a variety of general tactics discussed previously. These general tactics
have allowed us to achieve in a matter of days most of the capabilities of the
immediate rule mechanism of PL/CV [12] which had to be hand coded in the basic
implementation (on a scale of weeks). Moreover, the tactics that accomplished this are
easily understood in every detail and can be employed in building more complicated
tactics.

The tactic mechanism has also allowed us to structure the deductive power of the
system around specialized reasoners. Users have been able to write a collection of
tactics and theorems designed to construct proofs about a particular concept. For
example, Tim Griffin [24] collected a dozen theorems about the monotonicity of the
arithmetic operators, and wrote a few tactics to systematically apply these results to
a goal involving the order relation. The collection of tactics and theorems constitutes
a reasoner, which he calls Arithpack, that can be invoked by users and used by other
tactics.
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We plan to explore more domain specific tactics, such as those which have knowl-
edge of a particular concept such as the order relation in Arithpack, and we intend
to explore more general tactics such as those used in the Boyer-Moore [6] theorem
prover to structure inductive proofs. As in other cases of theory construction, it will
be necessary to accumulate a number of simple methods before we can begin to build
the powerful methods that human problem solvers draw upon to attack the most
routine problems.

Another promising path of investigation that we have undertaken is the unification
of the object language and the metalanguage. It is possible to express the ML
primitives for v-PRL in the theory itself and to write functions in v-PRL [41] which are
tactics. In this setting it is possible to prove in advance that certain tactics will succeed
and thereby avoid running them (C.F., Davis and Schwartz {13], Boyer and Moore
[6]). A language with this closure property is theoretically quite interesting as is shown
in Constable [11].

We believe that our experience with tactics has demonstrated the effectiveness of the
ML tactic mechanism and the implementation and extensions of it discussed here.
Not only are the functional metalanguage mechanisms provided ML well suited to the
problem domain and compatible with the object theory, but they provide a level of
abstraction comparable to that of the object theory. Thus users can build proofs and
tactics with nearly equal facility. We think that this is a feature of automated logics
which should be extensively explored.
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Appendix A
SUMMARY OF REFINEMENT TACTICS IN 1-PRL.

immediate: This tactic will complete most theorems where the goal follows by simple
propositional reasoning from the hypotheses, possibly using the decision
procedures of A-PRL.

sequence: This tactic takes a formula as an argument and performs a consequence
(‘seq’) refinement using this formula. It then applies the tactic immediate to both
subgoals. This is useful if the formula is easily deduced from the goal since it
eliminates the need to prove it by hand. An example call to this tactic with the
formula ‘x + 27 < 0" would be  sequence {x + 27 < 0}".

cases: This tactic takes a disjunctive formula as an argument, and peforms the
following. The tactic tries to prove the formula as a consequence, in much the same
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way as the sequence tactic would. On the second subgoal, the formula is refined
using the elimination rule for disjunctions, and the tactic trivial is applied to the
result. This tactic is useful wherever the proof proceeds by cases, and particularly
useful if it is easy to show that the list of cases is exhaustive. An example application
of this tactic would be ‘cases {x < 0 v —1(x < 0)}.

universal: This tactic repeatedly refines the goal until all the universal quantifiers
prefixing the conclusion have been eliminated. This is useful for removing a string
of universal quantifiers in one step.

quantifier: If the list of quantifiers of the conclusion is a legal permutation of the
quantifiers of one of the hypotheses, then this tactic performs the necessary refine-
ment steps to prove this. Two examples where this arises are if the universal
quantifiers have been rearranged (such as in Vx:intVy:intx < f(y)F
Vy, x:tint.x < f(y)) and if an existential quantifier has been moved into a sub-
formula as in

Vxiimtdy:intNziinty = g(x, z) b Vx:intNz:int3y:inty = g(x, z)).

trivial: This tactic tries to prove the goal by applying quantifier or universal if
the goal is quantified, and applying inmediate to any quantifier-free subgoals. This
tactic includes some heuristic assumptions about how the proof will proceed
following the application of the tactic. For example, it assumes that induction will
not be used to prove universally quantified formulae.

skolen:This tactic takes a term as an argument and refines the goal until no more
universally quantified variables are proceeding the conclusion. It then assumes that
the formula is an existential one, and refines using some-introduction with the given
term. Thus the term should be thought of as a function of the universally quantified
variables that proceed the first existential quantifier and any other variables that are
free in the environment (that is, it is a generalized Skolem function, whence the
name). An example of use on the goal of ‘+ Vx:int.y:int.x + 1 = y* would be
‘{skolem x + 1}’. this says that the witness for y is to be x + 1

Appendix B

SUMMARY OF EXTENSIONS OF THE ML LANGUAGE FOR A-PRL

Constructors and Destructors for Proofs

e refine: rule — tactic. Given a rule, this function builds a tactic that will refine
a proof based upon the rule. The function refine will fail if unable to refine the goal
using the rule.

e true_goal proof : proof. A constant proof with an empty environment, no
assumptions, and frue as the goal.

e conclusion: proof — formula. Returns the conclusion part of a goal.
e hypotheses: proof — formula list. Returns an ordered list of the hypotheses of

a goal.
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e environment: proof — binding list.Returns an ordered list of the bindings in
the environment of a goal.

o refinement: proof — rule. Returns the current refinement rule. Fails if no rule.

e children: proof — proof list.Returns the sugoals produced when the current
refinement rule was applied. Fails if no rule has been used.

Predicates, Constructors, and Destructors for Rules

e rule_kind: rule — tok. Returns the type of the rule. Possible values are:
ELIN, ALL-ELIN, SONE-ELINM, INTRO, OR-INTRO, ALL-INTRO, SONE-INTRO,
HYP, SEQ, ARITH, LENMA, INT-IND, LIST-IND, DEF, EQUALITY, SINPLIFY, DI-
VISION, and TACTIC.

® elim: int — rule. Constructs a simple elimination refinement rule. This rule can
be used to refine a sequent if the named hypothesis is not quantified.

e destruct_elim: rule — int. Returns the integer which represents the hypothesis
of an elim rule. The function fails if the rule is not an elim rule.

e all elim: int — term list — rule. Builds a rule for eliminating a universally
quantified formula. The terms supplied will be used instantiate the quantified
variables of the hypothesis.

o destruct_all elim: rule — int#(term list).Destructs an all_elim rule.

e gomeelim: int — tok list — rule. Builds a rule for eliminating an existentially
quantified formula. The tokens in the token list will be the variables entered into
the environment for the quantified variables.

o destruct_some_elim: rule — int#(tok list). Destructs a some_elim rule.

e intro: rule. Builds a rule for introducing on any formula except a disjunction or
quantified formula.

e or_intro: imt — rule.Builds a rule for introducing on a disjunction. The integer
is the designator indicating which disjunct should be proved.

e destruct_or_intre: rule — int.Destructs an or_intro rule.

e all intro: tok list — rule. Builds a rule for introducing on a universally quan-
tified formula. The token list is the list of variables to be used in place of the bound
variables.

o destruct_all_intro: rule — (tok list).Destructs an all_intro rule.

e some_intro: term list — rule Builds a rule for introducing on an existentially
quantified formula. The term list are the witnesses to be used.

e destruct_some_intro: rule — (term list). Destructs a some_intro rule.

e hyp: int — rule Builds a hypothesis rule. The integer is the number of the
hypothesis.

o destruct_hyp: rule — imt. Destructs a hypothesis rule.

e seq: formula list — rule. Builds a consequence rule. The list of formulae are
the intermediate goals to be proved.

e destruct_seq: rule — (formula list).Destructs a consequence rule.

e arith: rule. The arith rule.

e division: rule. The division rule.
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e equality: rule. The equality rule.

e simplify: rule. The simplify rule.

e lemma: tok — rule. The lemma rule. The token is the name of the theorem being
employed as a lemma.

e destruct_lemma: rule — tok. Destructs a lemma rule.

e ind: imt — int — int — int — rule. Builds an integer induction rule. The
four arguments are respectively the downward step size, the lower limit of the base
cases, the upper limit of the base cases, and the upward step size.

o destruct.ind: rule — (int # int # int # int). Destructs an integer-
induction rule. The results are the downward step size, the lower limit of the base
cases, the upper limit of the base cases, and the upward step size.

e list_ind: (tok list) — tok — rule. Builds a list induction rule. The token is
the list of integer variables, and the token is the list variable.

e destruct_list_ind: rule — ((tok list) # tok). Destructs a list-induction rule.
The results are the list of integer variables and the list variable.

o def: term — tok — rule. Builds a definition rule. The term is the function or
extraction object being referenced. The token is the kind of the reference, and
should be one of the following: INT-BASE, INT-UP, LIST-BASE, LIST-IND, or EXT. The
kind is determined by the kind of the object being referenced, i.e., a recursive
function on integers, a recursive function on lists, or an extraction function.

e destruct.def: rule — term. Destructs a definition rule.

# tactic: tok — rule. Builds a rule that will apply a tactic as a refinement tactic.
The token is the ML expression that represents the refinement tactic.

e destruct_tactic: rule — tok. Destructs a tactic rule.

Predicates and Selectors on Formulae

e formula kind: formula — tok. Gets the kind of formula as a token. Possible
values are ‘OR‘, ‘IMPLIES',‘AND*,’NOT',‘ALL ,'OME‘, ‘TRUE',“FALSE’, ‘LESS‘, and
‘EQUAL‘.

e is disjunction: formula — bool. Returns true if the formula is a disjunction.

The following predicates are similarly defined: is_implication,
is_conjunction, is.negation, is_universal, is_existential, is_true,

is_false, is_less, is_equal.

e quantified vars: formula — tok list. Returns the quantified variables (as
tokens) of a quantified formula. Fails if the formula is not a quantified formula.

e quantified var_types: formula — tok list. Returns the types of the quantified
variables (i.e., tokens *INT* or‘LIST) for each quantified variable of a quantified
formula. It fails if not a quantified formula.

e body: formula — formula. Returns the body of an ALL, SOME, or NOT for-
mula. Fails if the formula is not one of these kinds.

e antecedent: formula — formula. For implication formulae, returns the
antecedent. Fails if the formula is not an implication.

e consequent: formula — formula. Returns the consequent of an implication.
Fails if the formula is not an implication.
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e disjuncts: formula — formula list. Returns the disjuncts of a disjunction.
Fails if the formula is not a disjunction.

e conjuncts: formula — formula list. Returns the conjuncts of a conjunction.
Fails if the formula is not a conjunction.

e left_hand_side: formula — term. Returns the term of the left-hand side of a
LESS or EQUAL formula. Fails if the formula is not one of these two kinds.

e right hand side: formula — term. Similar to above except returns the term on
the right-hand side of the operator.

Predicates, Constructors, and Selectors for Terms

e term kind: term — tok. PRaturnsthe kind of a term. The possible values are the
tokens ‘CONS‘, ‘ADD‘, °SUB‘, °‘MUL‘, ‘DIV‘, °MOD‘, 'HD", ‘TL‘,‘NEG‘, *INTEGER',

‘VAR‘, 'FUNCTION®, and ‘LIST".

e sub_terms: term — term list. Returns the subterms of a term as a (potentially
empty) list of terms. Fails if the term is an integer or variable term.

e identifier_of term: term — tok. Returns the indentifier of a variable term or
function term. Fails if not a variable or function term.

e integer_term.value: term — int. Returns the integer of an integer term. Fails if
not an integer term.

e make var_term: tok — term . Make a variable term with the variable name being
the token.

Destructors for Bindings

e destruct_binding: binding — tok#tok. Given a binding, reduces the binding to
the variable name and type name, both tokens. The type name will be either ‘INT*
or ‘LIST'.

e variable: binding — tok. Return the name part of a binding.

e range: binding — tok. Returns the range (type) part of a binding. The range
will be “INT® or "LIST'.

Auto-tactic

e set_auto_tactic: tok -> void. Sets the auto-tactic to the tactic represented by
the text of the token.
show_auto.tactic: veid -> tok. Returns the current setting of the auto-tactic.
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