Definition 1 The relation " φ is an immediate subformula of ψ " is the smallest relation such that

- φ is an immediate subformula of $\neg \varphi$
- φ_{1} and φ_{2} are immediate subformulas of $\varphi_{1} \wedge \varphi_{2}$
- φ_{1} and φ_{2} are immediate subformulas of $\varphi_{1} \vee \varphi_{2}$
- φ_{1} and φ_{2} are immediate subformulas of $\varphi_{1} \Rightarrow \varphi_{2}$.

The relation " φ is a subformula of ψ " is the smallest relation such that

- φ is a subformula of φ
- if φ is an immediate subformula of ψ, then φ is a subformula of ψ
- if φ is a subformula of ψ and ψ is a subformula of γ, then φ is a subformula of γ.

The only formulas having no immediate subformulas are propositional variables (that is, φ is an immediate subformula of p never holds). Propositional variables are often called atomic formulas. Other formulas are often called compound formulas. We say a propositional variable p occurs in φ if p is a subformula of φ.

1

Definition 2 The degree of a formula is defined by the following (primitive) recursive function:

$$
\begin{aligned}
& \operatorname{degree}(\varphi)= \operatorname{case} \varphi \text { of } \\
&\langle\text { var }, p\rangle \longrightarrow 0 \\
&\langle\text { not }, \psi\rangle \longrightarrow \text { degree } \psi+1 \\
&\left\langle\text { and, } \psi_{1}, \psi_{2}\right\rangle \longrightarrow \text { degree } \psi_{1}+\text { degree } \psi_{2}+1 \\
&\left\langle\text { or }, \psi_{1}, \psi_{2}\right\rangle \longrightarrow \text { degree } \psi_{1}+\text { degree } \psi_{2}+1 \\
&\left\langle\text { imp }, \psi_{1}, \psi_{2}\right\rangle \longrightarrow \text { degree }_{1}+\text { degree } \psi_{2}+1 \\
& \text { end. }
\end{aligned}
$$

For example, $p \wedge(q \vee \neg r)$ has degree 3, while $p \wedge(q \vee r)$ has degree 2 .

Proposition 3φ is an atomic formula (i.e., a propositional variable) if and only if degree $(\varphi)=0$.

Proof. Immediate from the definition of degree.

The degree of a formula lets us prove facts about the set Form of all formulas by induction on the degree of formulas.

Proposition 4 The Induction Principle for Formulas Let P be a property of formulas. If
(i) $P(\varphi)$ holds for every formula of degree 0;
(ii) for all $n>0$, if $P(\varphi)$ holds for every formula φ of degree $<n$, then $P(\varphi)$ holds for every formula of degree n;

Then $P(\varphi)$ holds for every formula φ.

Proof. Let X be the set $\{\varphi \mid P(\varphi)$ does not hold $\}$. We want to show that P holds for all formulas φ, i.e., that X is empty.

We proceed by contradiction. Assume X not empty. By a well-known property of the natural numbers, there exists a formula $\varphi_{0} \in X$ that has minimal degree n_{0}, i.e., such that there is no formula in X with a smaller degree (there could be other formulas with the same degree). Let φ be an arbirary formula φ with degree $<n_{0}$. Since degree $(\varphi)<\operatorname{degree}\left(\varphi_{0}\right), \varphi$ cannot be in X, therefore $P(\varphi)$ holds. Since φ was arbitrary, $P(\varphi)$ holds for all φ s with degree less than n_{0}. By property (ii), then, this means that $P\left(\varphi_{0}\right)$ holds, i.e., $\varphi_{0} \notin X$, a contradiction. Therefore, X is empty, as required.

Proposition 5 For every formula φ, the set $\operatorname{Sub}(\varphi)=\{\psi \mid \psi$ is a subformula of $\varphi\}$ is finite.

Proof. By using the Principle of Induction for Formulas.
First, we check the base case. If φ has degree 0 , then φ is a propositional variable, and $\operatorname{Sub}(\varphi)=$ $\{\varphi\}$, which is finite.

Second, let $n>0$, and assume for all formulas φ of degree $<n$, that $\operatorname{Sub}(\varphi)$ is finite. Let φ be a formula of degree n . Since $n>0, \varphi$ is a compound formula, and thus either of the form $\neg \psi$, $\psi_{1} \wedge \psi_{2}, \psi_{1} \vee \psi_{2}$, or $\psi_{1} \Rightarrow \psi_{2}$. If φ is $\neg \psi$, then $\operatorname{degree}(\psi)=n-1<n$, therefore by induction hypothesis, $\operatorname{Sub}(\psi)$ is finite. Since $\operatorname{Sub}(\varphi)=\operatorname{Sub}(\psi) \cup\{\varphi\}, \operatorname{Sub}(\varphi)$ is finite. If φ is $\psi_{1} \wedge \psi_{2}$, then degree $\left(\psi_{1}\right)$ and degree $\left(\psi_{2}\right)$ are both $<n$, and by the induction hypothesis, we have $\operatorname{Sub}\left(\psi_{1}\right)$ and
$\operatorname{Sub}\left(\psi_{2}\right.$ finite; since $\operatorname{Sub}(\varphi)=\operatorname{Sub}\left(\psi_{1}\right) \cup \operatorname{Sub}\left(\psi_{2}\right) \cup\{\varphi\}, \operatorname{Sub}(\varphi)$ is finite. A similar argument works for \vee and \Rightarrow.

Assume a set $\mathbb{B}=\{t, f\}$ of truth values. Let S be a set of formulas.

Definition $6 A$ valuation v on S is a function $v: S \rightarrow \mathbb{B}$.

We say φ is true under valuation v if $v(\varphi)=t$. Similarly, φ is false under valuation v is $v(\varphi)=f$.

Definition 7 A Boolean valuation v is a valuation on Form such that:

- $v(\neg \varphi)=t$ if and only if $v(\varphi)=f$
- $v(\varphi \wedge \psi)=t$ if and only if $v(\varphi)=t$ and $v(\psi)=t$
- $v(\varphi \vee \psi)=t$ if and only if $v(\varphi)=t$ or $v(\psi)=t$
- $v(\varphi \Rightarrow \psi)=t$ if and only if when $v(\varphi)=t$, then $v(\psi)=t$.

Given two valuations v_{1}, v_{2}, if $v_{1}(\varphi)=v_{2}(\varphi)$, then v_{1} and v_{2} agree on φ. If v_{1} and v_{2} agree on all formulas in a set S, then v_{1} and v_{2} agree on S.

Let S_{1} and S_{2} be sets of formulas with $S_{1} \subseteq S_{2}$. If v_{1} is a valuation on S_{1}, v_{2} is a valuation on S_{2}, and v_{1} and v_{2} agree on S_{1}, then v_{2} is an extension of v_{1}.

An interpretation v_{0} is a valuation on propositional variables.

Proposition 8 Let v_{0} be an interpretation. If v and v^{\prime} are Boolean valuations that extend v_{0}, then v and v^{\prime} agree on all formulas.

Proof. By induction on formulas.

Thus, an interpretation can extend to at most a single Boolean valuation.
We can construct such a valuation explicitly:

$$
\begin{aligned}
& \operatorname{value}\left(\varphi, v_{0}\right)= \text { case } \varphi \text { of } \\
&\langle\text { var }, p\rangle \longrightarrow v_{0}(p) \\
&\langle\text { not }, \psi\rangle \longrightarrow \operatorname{vnot}\left(\operatorname{value}\left(p s i, v_{0}\right)\right) \\
&\left\langle\text { and }, \psi_{1}, \psi_{2}\right\rangle \longrightarrow \operatorname{vand}\left(\operatorname{value}\left(\psi_{1}, v_{0}\right), \operatorname{value}\left(\psi_{2}, v_{0}\right)\right) \\
&\left\langle\text { or, } \psi_{1}, \psi_{2}\right\rangle \longrightarrow \operatorname{vor}\left(\operatorname{value}\left(\psi_{1}, v_{0}\right), \operatorname{value}\left(\psi_{2}, v_{0}\right)\right) \\
&\left\langle i m p, \psi_{1}, \psi_{2}\right\rangle \longrightarrow \operatorname{vimp}\left(\operatorname{value}\left(\psi_{1}, v_{0}\right), \operatorname{value}\left(\psi_{2}, v_{0}\right)\right) \\
& \text { end. }
\end{aligned}
$$

where $\operatorname{vnot}(t)=f, \operatorname{vnot}(f)=t ; \operatorname{vand}(t, t)=t, \operatorname{vand}(t, f)=\operatorname{vand}(f, t)=\operatorname{vand}(f, f)=$ $f ; \operatorname{vor}(t, t)=\operatorname{vor}(t, f)=\operatorname{vor}(f, t)=t, \operatorname{vor}(f, f)=f ;$ and $\operatorname{vimp}(t, t)=\operatorname{vimp}(f, t)=$ $\operatorname{vimp}(f, f)=t, \operatorname{vimp}(t, f)=f$.

Proposition 9 For every interpretation v_{0}, value $\left(-, v_{0}\right)$ is a Boolean valuation that extends v_{0}.

Proof. By induction on formulas.

Proposition 10 For every interpretation v_{0}, there is a unique Boolean valuation that extends v_{0}, namely, value $\left(-, v_{0}\right.$.

Proof. Combining the previous two propositions.

We often write $v_{0} \models \varphi$ for $\operatorname{value}\left(\varphi, v_{0}\right)=t$, and say that φ is true under interpretation v_{0}. Similarly, we write $v_{0} \not \models \varphi$ for $\operatorname{value}\left(\varphi, v_{0}\right)=f$, and say that φ is false under interpretation v_{0}.

Proposition 11 Let φ be a formula. If the interpretations v_{0} and v_{0}^{\prime} agree on all propositional variables that occur in φ, then $\operatorname{value}\left(\varphi, v_{0}\right)=\operatorname{value}\left(\varphi, v_{0}^{\prime}\right)$.

Proof. A straightforward induction will not quite work. We need to prove the slightly stronger statement: if the interpretations v_{0} and v_{0}^{\prime} agree on all propositional variables that occur in φ, then for all subformulas ψ of φ, value $\left(\psi, v_{0}\right)=\operatorname{value}\left(\psi, v_{0}^{\prime}\right)$. Clearly, this implies the result we want, since φ is a subformula of φ. And establishing the stronger result is a simple application of induction on formulas.

