Definition 1 The relation " φ is an immediate subformula of ψ " is the smallest relation such that

- φ is an immediate subformula of $\neg \varphi$
- φ_1 and φ_2 are immediate subformulas of $\varphi_1 \wedge \varphi_2$
- φ_1 and φ_2 are immediate subformulas of $\varphi_1 \lor \varphi_2$
- φ_1 and φ_2 are immediate subformulas of $\varphi_1 \Rightarrow \varphi_2$.

The relation " φ is a subformula of ψ " is the smallest relation such that

- φ is a subformula of φ
- *if* φ *is an immediate subformula of* ψ *, then* φ *is a subformula of* ψ
- *if* φ *is a subformula of* ψ *and* ψ *is a subformula of* γ *, then* φ *is a subformula of* γ *.*

The only formulas having no immediate subformulas are propositional variables (that is, φ is an immediate subformula of p never holds). Propositional variables are often called *atomic formulas*. Other formulas are often called *compound formulas*. We say a propositional variable p occurs in φ if p is a subformula of φ .

1

Definition 2 The degree of a formula is defined by the following (primitive) recursive function:

$$\begin{split} degree(\varphi) &= \mathbf{case} \; \varphi \; \mathbf{of} \\ & \langle var, p \rangle \longrightarrow 0 \\ & \langle not, \psi \rangle \longrightarrow degree\psi + 1 \\ & \langle and, \psi_1, \psi_2 \rangle \longrightarrow degree\psi_1 + degree\psi_2 + 1 \\ & \langle or, \psi_1, \psi_2 \rangle \longrightarrow degree\psi_1 + degree\psi_2 + 1 \\ & \langle imp, \psi_1, \psi_2 \rangle \longrightarrow degree\psi_1 + degree\psi_2 + 1 \\ & \mathsf{end.} \end{split}$$

For example, $p \land (q \lor \neg r)$ has degree 3, while $p \land (q \lor r)$ has degree 2.

Proposition 3 φ is an atomic formula (i.e., a propositional variable) if and only if degree(φ) = 0.

Proof. Immediate from the definition of degree.

The degree of a formula lets us prove facts about the set *Form* of all formulas by induction on the degree of formulas.

Proposition 4 The Induction Principle for Formulas Let P be a property of formulas. If

- (i) $P(\varphi)$ holds for every formula of degree 0;
- (ii) for all n > 0, if $P(\varphi)$ holds for every formula φ of degree < n, then $P(\varphi)$ holds for every formula of degree n;

Then $P(\varphi)$ *holds for every formula* φ *.*

Proof. Let X be the set $\{\varphi \mid P(\varphi) \text{ does not hold}\}$. We want to show that P holds for all formulas φ , i.e., that X is empty.

We proceed by contradiction. Assume X not empty. By a well-known property of the natural numbers, there exists a formula $\varphi_0 \in X$ that has minimal degree n_0 , i.e., such that there is no formula in X with a smaller degree (there could be other formulas with the same degree). Let φ be an arbitrary formula φ with degree $< n_0$. Since $degree(\varphi) < degree(\varphi_0)$, φ cannot be in X, therefore $P(\varphi)$ holds. Since φ was arbitrary, $P(\varphi)$ holds for all φ s with degree less than n_0 . By property (ii), then, this means that $P(\varphi_0)$ holds, i.e., $\varphi_0 \notin X$, a contradiction. Therefore, X is empty, as required.

Proposition 5 For every formula φ , the set $Sub(\varphi) = \{\psi \mid \psi \text{ is a subformula of } \varphi\}$ is finite.

Proof. By using the Principle of Induction for Formulas.

First, we check the base case. If φ has degree 0, then φ is a propositional variable, and $Sub(\varphi) = \{\varphi\}$, which is finite.

Second, let n > 0, and assume for all formulas φ of degree < n, that $Sub(\varphi)$ is finite. Let φ be a formula of degree n. Since n > 0, φ is a compound formula, and thus either of the form $\neg \psi$, $\psi_1 \land \psi_2, \psi_1 \lor \psi_2$, or $\psi_1 \Rightarrow \psi_2$. If φ is $\neg \psi$, then $degree(\psi) = n - 1 < n$, therefore by induction hypothesis, $Sub(\psi)$ is finite. Since $Sub(\varphi) = Sub(\psi) \cup \{\varphi\}$, $Sub(\varphi)$ is finite. If φ is $\psi_1 \land \psi_2$, then $degree(\psi_1)$ and $degree(\psi_2)$ are both < n, and by the induction hypothesis, we have $Sub(\psi_1)$ and $Sub(\psi_2 \text{ finite; since } Sub(\varphi) = Sub(\psi_1) \cup Sub(\psi_2) \cup \{\varphi\}, Sub(\varphi) \text{ is finite. A similar argument works for } \lor \text{ and } \Rightarrow.$

Assume a set $\mathbb{B} = \{t, f\}$ of *truth values*. Let S be a set of formulas.

Definition 6 A valuation v on S is a function $v: S \to \mathbb{B}$.

We say φ is true under valuation v if $v(\varphi) = t$. Similarly, φ is false under valuation v is $v(\varphi) = f$.

Definition 7 A Boolean valuation v is a valuation on Form such that:

- $v(\neg \varphi) = t$ if and only if $v(\varphi) = f$
- $v(\varphi \land \psi) = t$ if and only if $v(\varphi) = t$ and $v(\psi) = t$
- $v(\varphi \lor \psi) = t$ if and only if $v(\varphi) = t$ or $v(\psi) = t$
- $v(\varphi \Rightarrow \psi) = t$ if and only if when $v(\varphi) = t$, then $v(\psi) = t$.

Given two valuations v_1, v_2 , if $v_1(\varphi) = v_2(\varphi)$, then v_1 and v_2 agree on φ . If v_1 and v_2 agree on all formulas in a set S, then v_1 and v_2 agree on S.

Let S_1 and S_2 be sets of formulas with $S_1 \subseteq S_2$. If v_1 is a valuation on S_1 , v_2 is a valuation on S_2 , and v_1 and v_2 agree on S_1 , then v_2 is an *extension* of v_1 .

An *interpretation* v_0 is a valuation on propositional variables.

Proposition 8 Let v_0 be an interpretation. If v and v' are Boolean valuations that extend v_0 , then v and v' agree on all formulas.

Proof. By induction on formulas.

Thus, an interpretation can extend to *at most* a single Boolean valuation.

We can construct such a valuation explicitly:

$$\begin{aligned} value(\varphi, v_0) &= \mathbf{case} \ \varphi \ \mathbf{ot} \\ & \langle var, p \rangle \longrightarrow v_0(p) \\ & \langle not, \psi \rangle \longrightarrow vnot(value(psi, v_0)) \\ & \langle and, \psi_1, \psi_2 \rangle \longrightarrow vand(value(\psi_1, v_0), value(\psi_2, v_0)) \\ & \langle or, \psi_1, \psi_2 \rangle \longrightarrow vor(value(\psi_1, v_0), value(\psi_2, v_0)) \\ & \langle imp, \psi_1, \psi_2 \rangle \longrightarrow vimp(value(\psi_1, v_0), value(\psi_2, v_0)) \\ & \mathbf{end.} \end{aligned}$$

where vnot(t) = f, vnot(f) = t; vand(t,t) = t, vand(t,f) = vand(f,t) = vand(f,f) = f; vor(t,t) = vor(t,f) = vor(f,t) = t, vor(f,f) = f; and vimp(t,t) = vimp(f,t) = vimp(f,f) = f.

Proposition 9 For every interpretation v_0 , $value(-, v_0)$ is a Boolean valuation that extends v_0 .

Proof. By induction on formulas.

Proposition 10 For every interpretation v_0 , there is a unique Boolean valuation that extends v_0 , namely, value $(-, v_0)$.

Proof. Combining the previous two propositions.

We often write $v_0 \models \varphi$ for $value(\varphi, v_0) = t$, and say that φ is true under interpretation v_0 . Similarly, we write $v_0 \not\models \varphi$ for $value(\varphi, v_0) = f$, and say that φ is false under interpretation v_0 .

Proposition 11 Let φ be a formula. If the interpretations v_0 and v'_0 agree on all propositional variables that occur in φ , then $value(\varphi, v_0) = value(\varphi, v'_0)$.

Proof. A straightforward induction will not quite work. We need to prove the slightly stronger statement: if the interpretations v_0 and v'_0 agree on all propositional variables that occur in φ , then for all subformulas ψ of φ , $value(\psi, v_0) = value(\psi, v'_0)$. Clearly, this implies the result we want, since φ is a subformula of φ . And establishing the stronger result is a simple application of induction on formulas.