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Many of the negative results that we have presented in the previous lecture immediately apply to
Peano Arithmetic, which, as we have shown, can represent the computable functions over natu-
ral numbers. One may argue that this is the case because Peano Arithmetic has in�nitely many
(induction) axioms and that a �nite axiom system surely wouldn't lead to undecidability and unde-
�nability issues. In the following we will show that even a �nite axiom system can be suf�ciently
strong to allow for a representation of all computable functions and that all the negative results
carry over theories that are much smaller than Peano Arithmetic.

Q: How can we give a �nite axiomatization for a suf�ciently strong theory of arithmetic?

24.1 The Theory Q
If we simply drop the induction axioms from Peano Arithmetic, the resulting theory would be
extremely weak, as we wouldn't even be able to prove that every number different from zero must
be the successor of some other number. However, theoretical investigations have shown adding this
simple law in place of the induction scheme leads to an astonishingly strong formal theory. For
historical reasons, the resulting theory is called Q. It is de�ned as as the theory over the language
L(=,+,*,0,1) that satis�es the following axioms
Successor Axioms
non-surjective (∀x) ∼(x+1 = 0)
injective (∀x,y) (x+1=y+1 ⊃ x=y)
non-zero (∀x) ∼(x=0) ⊃ (∃y)(y+1=x)

Addition Axioms
add-base (∀x) (x+0 = x)
add-step (∀x,y) (x+(y+1) = (x+y)+1)

Multiplication Axioms
mul-base (∀x) (x*0 = 0)
mul-step (∀x,y) (x*(y+1) = (x*y)+x)

The original formulation of the theory Q only mentions these 7 axioms but assumes that function
symbols and equality are built into �rst-order logic. Since our formulation of �rst-order logic does
not make this assumption we have to add the functionality axioms for + and *, and the equality
axioms ref, sym, and trans. We also need a restricted substitution axiom that permits substitution
on the level of atomic formulas. Since atomic formulas are built from predicate symbols, variables,
parameters, and � in a theory with functions and equality � function applications and the equality
predicate, we add a term-substitution axiom for every argument of every function symbol.
term-subst: (∀x,y) (x=y ⊃ f(.,x,.) = f(.,y,.))

Since the language only provides two function symbols (all others would be an abbreviation for
combinations of these) there are only four substitution axioms.
term-subst+l: (∀x,y,z) (x=y ⊃ x+z = y+z
term-subst+r: (∀x,y,z) (x=y ⊃ z+x = z+y
term-subst∗l : (∀x,y,z) (x=y ⊃ x*z = y*z
term-subst∗r : (∀x,y,z) (x=y ⊃ z*x = z*y

This means that the theory Q is �nitely axiomatizable.
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This theory is obviously consistent with our view of the natural numbers, because the Standard-
Interpretation works out �ne. It has the advantage of having only �nitely many axioms, and we
will show that it is very strong, as far as expressiveness is concerned.
In fact, a careful look at the proof that all computable functions can be represented in Peano
Arithmetic shows that it did not depend on the induction axiom at all. Recall that an n-ary function
f : N→N is representable in Q if there is an (n+1)-ary predicate Rf in L(=,+,*,0,1) such that
for all x1, .., xn, y ∈N

• f(x1, .., xn)=y implies |=T Rf(x1,..,xn,y)

• f(x1, .., xn) 6=y implies |=T ∼Rf(x1,..,xn,y)

What matters is that we can �nd an appropriate predicate to represent a computable function and
that we can show semantically that the above conditions hold in every model of Q. We are free to
prove this by (semantic) induction on numbers and are not forced to use the induction axiom. Let
us brie�y review how we represent successor, constants, projection, composition, minimization,
and primitive recursion.
• The successor function can be represented by the formula x+1=y.
• Addition + is represented by the formula x+y=z.
• Multiplication ∗ is represented by the formula x*y=z.
• The constant function ck can be represented by the formula y=k.
• The projection function πn

i
can be represented by the formula y=xi.

• The composition h = g◦f1, .., fk can be represented by the formula
(∃z1,..zk)( Rf1(x1,..xn,z1) ∧ . . . ∧ Rfk(x1,..xn,zk) ∧ Rg(z1,..zk,y),

where Rf1 ,. . . , Rfk , and Rg are the predicates representing f1, .., fk, and g respectively.
• The minimization h = µf can be represented by the formula below, where Rf represents f :

(∀z)(z≤y ⊃ (Rf(x1,..xn,z,0) ⇔ z=y)).
• Primitive recursion can be expressed entirely in all the functions and constructors mentioned

above. The proof for that was lengthy but depended only on the properties of these functions
and not on the speci�c logic used for representing µ-recursive functions.

Thus we can use exactly the same formulas that we used in the representation of computable
functions in Peano Arithmetic to represent the computable functions in Q. Checking the validity
of these representations does not depend on the induction axiom (we actually just need an instance
of non-zero), since induction is only required on the meta-level but not on the object level of our
theory. Thus we get

Theorem: All µ-recursive functions are representable in Q.

This means that all the negative results about theories that can represent computable functions
apply to the theory Q as well.

Theorem: Q is undecidable and so is every consistent extension of Q.
Theorem: No consistent, axiomatizable extension of Q is complete.

We are now even able to prove that �rst-order logic is undecidable. We prove this by reducing
decidability in �rst-order logic to decidability in Q.
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Theorem: [Church's Theorem] Validity in �rst-order logic is undecidable.

Proof: Let AxQ be the conjunctions of all the axioms of the theory Q. Then a formula X is a
theorem in Q if and only if the formula AxQ ⊃ X is valid (in �rst-order logic).
Now assume that there is a procedure decide-fol for deciding validity in �rst-order logic. Then
the algorithm that translates a formula X into AxQ ⊃ X and then applies decide-fol to this
formula would decide validity in Q. Since Q is undecidable, this cannot be. �

An interesting consequence of Church's Theorem is that �rst-order logic is incomplete (as a the-
ory), because it is obviously consistent and axiomatizable but not decidable. This, however, is not
surprising. Since there is an unlimited number of models for �rst-order logic, there are plenty of
�rst-order formulas that are not valid and whose negation isn't valid either.

24.2 Models of Q
Although the theoryQ is expressive enough to represent all computable functions and thus appears
to be as strong as Peano Arithmetic, the fact that we removed the induction axiom will obviously
have some effect on what is provable in Q. Here is one example.

The formula (∀x)(x+1 6=x) is not valid in Q.
At a �rst glance this claim may appear strange, since x+1 6= x is one of the basic laws of the
natural numbers and the formula can easily be proven in Peano Arithmetic. However, one has
to keep in mind that there are many non-standard models for Q that violate some of the basic
laws of the natural numbers. Many of these models are not models of Peano Arithmetic, since the
induction axiom essentially states that any property of what we can show for natural numbers must
hold for all numbers, standard or not. In the theory Q, we don't have this axiom anymore.

Q: How can we prove the above claim?

We have to construct a model of Q in which the law x+1 6= x does not hold. Since it is true for
natural numbers, we have to construct a non-standard model that has extra elements besides natural
numbers and satis�es the axioms ofQ on these extra elements, but not the formula (∀x)(x+1 6=x).
So let us pick an element ω that is not a natural number. We don't need to give an intuition for
this element, but we could imagine that ω could be in�nity. There is no term that represents ω, but
nevertheless ω must be considered when we evaluate a universally quanti�ed formula.
On the natural numbers, all symbols of Q will be interpreted as usual. 0 remains to be interpreted
as zero, 1 as one, + as addition, and * as multiplication. But we de�ne i+ω = ω = ω+i for all
i, 0∗ω = 0 = ω∗0, and i∗ω = ω = ω∗i for all other i. The following table summarizes the
interpretation of the symbols + and *.

+ j ∈N ω ∗ 0 j 6=0 ω

i ∈N i+ j ω 0 0 0 0
ω ω ω i6=0 0 i ∗ j ω

ω 0 ω ω

Note that this table is a semantical table about one speci�c interpretation of the symbols + and *,
not about the symbols themselves.
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It is obvious that the law x+1 6= x does not hold in this interpretation, as ω+1 = ω. What needs to
be done is verifying that the interpretation is in fact a model of Q. Since we are using the standard
interpretation of + and * as long as we are dealing with natural numbers, we only have to check
the seven axioms when ω is involved.

non-surjective: ω+1 6= 0 is obvious from the above multiplication table.
injective: x+1 = ω+1 implies x+1 = ω which is the case only if x = ω

Since the addition table is commutative, ω+1 = x+1 implies ω = x.
non-zero: Since ω+1 = ω we know that (∃y)(y+1 = ω)

add-base: ω+0 = ω by de�nition.
add-step: ω+(y+1) = ω = ω+1 = (ω+y)+1

x+(ω+1) = x+ω = ω = ω+1 = (x+ω)+1

mul-base: ω∗0 = 0 by de�nition
mul-step: ω∗(y+1) = ω = (ω∗y)+ω for any y

0∗(ω+1) = 0 = 0+0 = (0∗ω)+0

x∗(ω+1) = x∗ω = ω = ω+x = (x∗ω)+x for all other x

Thus the given interpretation is a model of Q that violates the law x+1 6= x, which means that
(∀x)(x+1 6=x) is not valid in Q.
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