Applied Logic Lecture 23: Unsolvable Problems in Logic
CS 4860 Spring 2009 Tuesday, April 14, 2009

The fact that Peano Arithmetic is expressive enough to represent all computable functions means
that some of the unsolvable problems from the theory of computation carry over to first-order logic.
We know that the theory of computation is undecidable, that is we can formulate problems about
computable functions that cannot be decided by an algorithm in a uniform way. Since we have
shown how to represent computable functions in logic, the same problems can be formulated in
first-order logic as well, which means that first-order logic must be undecidable. We are now in a
position to give a unified account of this and two other negative results of logic:

e Church’s Theorem: the undecidability of logic
e Tarski’s Theorem: the undefinability of truth

e GOdel’s Theorem: the incompleteness of systems of arithmetic.

23.1 GOdel Numberings and Diagonalization

The key to all these results is an ingenious discovery made by Godel in the 1930’s: it is possible
to effectively enumerate all computable functions in a uniform way (via so-called Godel num-
berings, and it is possible to define computable functions by diagonalization through the table of
computable functions. Assumptions about decidability and computability then enable us to define
a new computable function that is different from all other computable functions and thus leads to
a contradiction. We will briefly sketch both methods.

Definition: A Godel numbering is a mapping from a set of expressions to N that satisfies the
following conditions

(1) Different expressions receive different Godel numbers. (injective)
(2) The Godel number of an expression can be effectively calculated. (computable)
(3) Itis effectively decidable whether a given number is a Godel number or not.

It is easy to see that the language of Peano-Arithmetic has a Godel-numbering. As we only use
finitely many different symbols to write down arithmetic formulas we simply assign a number to
every symbol. For instance, we may assign 0 to (, 1 to), 2 to V¥, 3 to 4, etc. Thus every formula
corresponds to a unique finite sequence of numbers that represents the string of symbols needed to
write down the formula.

There are multiple ways to encode sequences of numbers by natural numbers. One possibility
is using polynomials as described in the representation of primitive recursion. Another one is
extending the bijective encoding () of pairs of numbers to an encoding ()? of triples, quadruples,
etc, and then to a bijective encoding (()) of arbitrary lists of numbers as follows:

(o)' = a, (zy, o) = (o,) i), (1, 1)) = (0, (21, 0,)™
All these functions are computable and have computable inverses, which means that given the
assignments of numbers to symbols (and the rules for parsing formulas) we can determine whether
a number corresponds to a formula and we are able to construct the formula if this is the case.

1

Diagonalization is a method for deriving contradictions from certain assumptions, which is best
illustrated when considering an infinite set of functions. We construct a new function by going
diagonally through the table of all function values and modifying the entry at each diagonal point.
As a result we get a function that cannot be represented by a row of the table. The assumptions are
usually crucial for proving that this diagonal function exists at all.

0 1 2 3 4 5 6

fo || fo@] fo(1) Jo(2) Jo(3) Jo4) Jo(5) Jo(6)
fi | f1(0) [f1(2) J13) J14) J1(5) J1(6)
f2 | f2(0) J2(1) 22| f203) f2(4) 12(5) 12(6)
f3 | f3(0) f3(1) 13(2) 33| f3(4) I3(5) 13(6)
f3 | f3(0) f3(1) f3(2) f3(3) fs@®] f35) f4(6)
f5 | [5(0) f5(1) f5(2) f5(3) f5(4) [s5)| f5(0)
fe | f6(0) fe(1) f6(2) f6(3) fe(4) f6(5) f6(6)

Cantor’s famous theorem about the nondenumerability of the set of total functions from N to N
(which is equivalent to the nondenumerability of the set of real numbers), for instance, uses this
argument. If we assume that all functions from N to N are denumerable, then we can define a new
function f:N—Nas f(i) := f;(7) + 1. Because of the assumption, f must be some f; in the table
and we get f(j) = f;(j) + 1 = f(j) + 1, a clear contradiction. As a result, the set of functions
from N to N must be nondenumerable.

Godel’s important modification to that argument was the insight that diagonalization on com-
putable functions is computable, provided we use a Gddel-numbering of computable functions.
Godel originally expressed his construction without an explicit reference to computable functions
(there was not yet a developed theory of computation). Instead he formulated it entirely within
logic as an encoding of self-reference within formulas, which is the key issue in a diagonalization.

Definition: Let | X] denote the representation of the Godel number of the formula X (in which x
may occur free). The diagonalization of X is the formula (3x) (x=[X | r X).

Lemma 1: Diagonalization is computable: there is a computable function diag such that n =
[X implies diag(n) = [(Ix) (x=]| X | A X)], that is diag(n) is the Godel number of the
diagonalization of X whenever 7 is the Godel number of the formula X.

Proof sketch: Given a number n we can effectively determine whether it is a Godel number
of some formula X. Once we have X we can construct the formula (dx) (x=n A X) and
compute its Godel number.

The difficult part of the actual proof is recasting the argument so that it deals with natural
numbers only. One needs a specific Godel-numbering for this purpose.

Diagonal Lemma: If 7 is a theory in which diag is representable, then for any formula B(x)
with exactly one free variable z there is a formula G such that =; G < B([G]).

Proof: Assume that D represents diag in 7 and let /" be the formula (Jy) (D (x,y) A B(y)).
Choose G = (3x) (x=[F| AF) as the diagonalization of I and let n and ¢ be the Godel
numbers for F' and G, respectively. By definition of diag we know diag(|F'|) = [G] and
thus D (12, g) must be valid in 7.

Furthermore G = (3x) (x=n A (Jy) (D (x,y) A B(y)) is logically equivalent to the formula
(3y) (D(n,y) A B(y)). Because of the functionality of D and the validity of D(n,g) this
formula is equivalent to D (n, g Y AB(g), which in turn is equivalent to 5B (g_)).

Thus G is logically equivalent to B([G']) in 7 and hence =17 G < B([G]). O

Note that the diagonal lemma holds for Peano Arithmetic, as diag is representable in any theory
that can represent the computable functions.

23.2 Incompleteness Results

The diagonal lemma shows that in theories that can represent computability all formulas have a
fixed point. Fixed point constructors, on the other hand, lead to inconsistencies, as they make it
possible to define formulas that are equivalent to their own negation. Before we prove this, let us
introduce some useful notation.

Definition: Let 7 be a theory

(1) 7 is called consistent, if there is no theorem in 7 whose negation is also in 7 .

(2) 7 is called complete, if for every formula X in the language of 7 either X or ~X is a
theorem in 7 .

(3) A set S of formulas is called decidable if the set of Godel numbers of S' is decidable,
i.e. if the characteristic function of that set is computable.

(4) 7T is called axiomatizable, if there is a decidable subset of 7 whose logical consequences
are exactly the theorems of 7. 7 is finitely axiomatizable if it is axiomatizable with a
finite set of axioms.

(5) A set ScNiis called definable in 7 if there is unary predicate Ry in the formal language
of 7, such that for all y eN: y € S implies =y Rs(y) and y ¢S implies =7 ~Rs (y).
Definability extends naturally from sets (i.e. unary relations) to n-ary relations.

(6) A theory 7" is an extension of 7 if 7c7”, i.e. if every theorem in 7 is also one in 7.

(7) The theory of arithmetic is the theory over the language £(=, +, *, 0, 1) whose theorems
are the formulas that are true in the standard interpretation (N, =, +, *, 0, 1).

Note that a set S is definable in 7 if its characteristic function fg is representable in 7. For
if R¢(x,y) represents fg, then neS implies fg(n)=1 and thus =r R;(n,1), and n ¢S implies
0=fs(n)#1 and thus =7 ~R;(n,1). So the predicate Rg(z) = Ry (x,1) defines S.

An immediate consequence of this insight is that every decidable set of numbers is definable in
Peano arithmetic and in any other theory that can represent the computable functions, as the char-
acteristic function of every decidable set is computable.

Representability and definability is preserved under extensions. In fact, if f is representable in 7°
and 7" extends 7 then f is representable in 7’ by the same predicate. Arithmetic is an extension

of Peano Arithmetic since the Peano axioms are true in both standard and non-standard inter-
pretations, so representability and definability carries over from Peano arithmetic to arithmetic.
However, there are certain kinds of functions and sets that cannot be represented anymore once a
theory is expressive enough to represent the computable functions. A key observation, for instance,
is that such a theory cannot define its own theorems by a formula.

Lemma 2: If 7 is a consistent theory in which diag is representable, then the set of Godel num-
bers of 7 -theorems is not definable in 7.

Proof: Assume that GN defines the set of Godel numbers of 7 -theorems in 7. By the diagonal
lemma, there must be a formula G such that =7 G < ~GN([G]). We show that both GG
and ~G are 7 -theorems, which contradicts the consistency of 7.

Assume G is not a 7 -theorem. Then =y ~GN([G]) by definition of GN and thus = G
because of the above equivalence. This, in turn, means that GG is a 7 -theorem. Thus by
definition of GN we know =7 GN([G]). Because of the above equivalence =7 ~G must
hold. =

The proof of Lemma 2 mimics in logic what Cantor’s argument did to functions on natural num-
bers. The assumption that the predicate GV is definable corresponds to the assumption that we
can construct a function f via f(y)=f,(y). Modifying GN(y) into ~GN(y) captures the key
idea behind defining f(y)=f,(y) + 1, which makes f different from every f,. The contradiction
G < ~G then follows for the fixed point G of ~G'N — while in Cantor’s theorem it is stated as
f(7)=f(j) + 1 for the index j of f.

An immediate consequence of Lemma 2 is that it is impossible to represent the arithmetically true
statements by a formula in arithmetic.

Theorem: [Tarski’s Indefinability Theorem] Arithmetical truth is not arithmetically definable,
i.e. the set of Godel numbers of formulas that are true in natural number arithmetic are not
definable in the theory of arithmetic.

If a theory 7 is decidable, then there is an effective method for deciding whether a given formula
is a theorem in 7. One only has to calculate the Godel number of that formula and test whether
the value of the corresponding characteristic function is 1. Conversely, if a theory is undecidable,
then there cannot be an effective method for checking whether a given formula is a theorem or not.

Theorem 1: No theory that can represent the computable functions is decidable.

Proof: Assume that 7 is decidable and can represent the computable functions. Then the charac-
teristic function of the set of Godel numbers of 7 is representable, which means that the set
of Godel numbers of 7 is definable. Because of Lemma 2 this cannot be the case. O

Corollary: Arithmetic is undecidable.

An immediate consequence of Theorem 1 is Church’s undecidability theorem, which states that
first-order logic is undecidable. We can easily reduce the decidability problem for first-order logic
to the decidability problem for theories that can represent the computable functions, provided we
find a finitely axiomatizable theory that has this property. Since the theories we considered so far
are not finitely axiomatizable, we postpone the proof of Church’s undecidability theorem until we
have introduced the theory Q.

The following lemma provides the key argument for Godel’s first Incompleteness Result.

Lemma 3: Every axiomatizable and complete theory is decidable.

Proof: Let 7 be an axiomatizable complete theory and S be its set of axioms.
If 7 is inconsistent, then for some formula X both X and ~X are theorems of 7, thus
consequences of the axioms. As a result, every formula in the language of 7 is a logical
consequence of the axioms, which means that 7 is the set of all formulas, hence decidable.

Assume that 7 is consistent. Since S is decidable, we can determine whether a given deriva-
tion of a formula from the axioms constitutes a valid logical inference. Therefore, it is possible
to enumerate all valid derivations in 7 and all logical consequences of the axioms.

Now let X be an arbitrary formula in the language of 7. Since 7 is complete, the enumera-
tion of the logical consequences of the axioms in S will yield either X or ~X after finitely
many steps. Thus we can decide whether X is a theorem in 7 or not. 0

Theorem: [Godel’s First Incompleteness Theorem] There is no consistent, complete, and ax-
iomatizable theory that can represent the computable functions.

Proof: This is an immediate consequence of Lemma 3 and the fact that no theory that can repre-
sent the computable functions is decidable (Theorem 1). U

Corollary: Arithmetic is not axiomatizable.

Godel’s incompleteness theorem is often described as “any consistent and sufficiently strong formal
theory of arithmetic is incomplete”, where a formal theory is viewed as one whose theorems are
derivable from an axiom system. For such theories there will always be formulas that are true (for
instance, in the standard interpretation of arithmetic) but not theorems of the theories. When it
comes to arithmetic, truth and provability are in no sense the same.

The above formulation is a sharpening of that statement, as it specifies “sufficiently strong” as
“capable of representing computable functions”. As we will see later, this includes theories that
are much weaker than Peano Arithmetic.

Godel’s incompleteness result has a strong impact on the development of formal reasoning envi-
ronments for mathematics. It is impossible to develop a consistent and complete proof system for
any fragment of mathematics that includes arithmetic. As formal systems necessarily need to have
decidable sets of axioms (even if we use axiom schemes), we have to sacrifice completeness, which
means that there will always be theorems that are true but cannot be proven in the proof system.

On the other hand, one has to be aware that the incompleteness result has little effect on practical
theorem proving. Most, if not all theorems in practical mathematics do not involve the issue of
self-application and will therefore remain provable in a formal system.

Undecidability, however, is a bigger problem, as it shows the limitations of fully automated proof
systems. While it is possible to find a proof for almost all (valid) practical problems in a formal
proof system, the undecidability of first-order logic makes it impossible to check whether a proof
attempt fails or just needs more time to complete. For this reason, all proof systems that aim at
formalizing large fragments of mathematics and computer science (like Cornell’s Nuprl system)
proceed interactively with some controlled automated support for decidable sub-problems.

The undecidability of logic, the undefinability of arithmetical truth, and the incompleteness of
systems of arithmetic are not the only unsolvable problems for expressive logics. A fourth issue
involves the undefinability of provability: it is not possible to describe a predicate Prov that repre-
sents provability in a theory 7 such that ~Prov([false]) is a theorem in 7. We call a predicate
Prov a provability predicate for 7 if it satisfies the following conditions for all formulas X and Y.

o If =7 X then =7 Prov([X]
o =1 Prov([XDY]) D (Prov([X]) D Prov([Y]))
e =1 Prov([X]) D Prov([Prov([X])])

The first condition states that every theorem should be provable, the second that the modus ponens
holds for provability, and the third that provability is provable. Note that the second and third
conditions are stronger than the first in the sense that the implication itself must be a theorem in 7.

Note that a condition like =7 Prov(|X]) D X is not included in the definition, since this re-
quirement cannot be satisfied unless 7 is inconsistent. In fact, Lob’s Theorem shows that this
condition implies =7 X.

Theorem: [Lob’s Theorem] If Prow is a provability predicate for a theory 7 that can represent
the computable functions then =1 Prov([|X]) D X implies =7 X for any X.

Proof: Assume =7 Prov([X]) D X. By the diagonal lemma, the formula Prov(y) D X must
have a fixed point G, i.e. there is a formula GG such that =+ G < (Prov(|G]) D X). Since
Prov is a provability predicate, we know
Er Prov([G D (Prov(|G]) D X)]) and also
Er Prov([G]) D Prov([Prov([G]) D X]). and
Er Prov([G]) D Prov([Prov([G])]) D Prov([X]).

Since =7 Prov([G1]) D Prov(Prov([G])) we get E=r Prov([G]) D Prov(|X]).

Because of our assumption we conclude =7 Prov([G]) D X and =1 G follows from the
definition of GG. From this we conclude =1 Prov(|G1]), which finally givesus |=r X. O

An immediate consequence of Lob’s Theorem is Godel’s Second Incompleteness Theorem, which
states that provability predicates for consistent predicates cannot be complete.

Theorem: [Godel’s Second Incompleteness Theorem] If Prov is a provability predicate for a
consistent theory 7 that can represent the computable functions then =1 ~Prov([0=1]).

Proof: Suppose =7 ~Prov([0=1]). By definition of negation =7 Prov([0=1]) D 0=1. By
Lob’s theorem, we then conclude =7 0=1, which cannot be because 7 is consistent.]

In other words, no sufficiently expressive consistent theory can prove its own consistency.

