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Inductively Ordered Integral Domains

The integers as we know them are an integral domain, with two associative and commutative
operations + and *, neutral elements for both of them, which we will call 0 and 1 from now on,
inverse elements for +, such that the distributivity law and the law of no zero divisors holds. The
axioms are the following.
ref: (∀x) x=x

sym: (∀x,y) (x=y ⊃ y=x)

trans: (∀x,y,z) ((x=y ∧ y=z) ⊃ x=z)

subst: (∀x,y) (x=y ⊃ P(.,x,.) ⊃ P(.,y,.)) for every predicate symbol

functionality+: (∀x,y)(∃!z) x+y = z

comm+: (∀x,y,z) (x+y = z ⊃ y+x = z))

assoc+: (∀x,y,z,t) ((x+y)+z = t ⊃ x+(y+z) = t)

ident+: (∀x)( x+0 = x ∧ 0+x = x)

inv: (∀x)(∃x̄)( x+x̄ = 0 ∧ x̄+x = 0)

functionality∗: (∀x,y)(∃!z) x*y = z

comm∗: (∀x,y,z) (x*y = z ⊃ y*x = z))

assoc∗: (∀x,y,z,t) ((x*y)*z = t ⊃ x*(y*z) = t)

ident∗: (∀x)( x*1 = x ∧ 1*x = x)

distrib: (∀x,y,z)( x*(y+z) = x*y + x*z ∧ (x+y)*z = x*z + y*z)

Z: (∀x,y)( x*y = 0 ⊃ (x=0 ∨ y=0))

The less-than order on integers is a strict ordering relation < that is linear, discrete, and relates 0
and 1, and is monotone wrt. addition and (nonnegative) multiplication. This leads to the following
axioms.
lt-asym: (∀x,y) (x<y ⊃ ∼(y<x))

lt-trans: (∀x,y,z) ((x<y ∧ y<z) ⊃ x<z)

lt-linear: (∀x,y) (x<y ∨ y<x ∨ x=y)

lt-discrete: (∀x,y) ∼(x<y ∧ y<x+1)

lt-0-1: 0<1

lt-mono-+: (∀x,y,z)(x<y ⊃ x+z < y+z)

lt-mono-*: (∀x,y,z)((0<z ∧ x<y) ⊃ x*z < y*z)

The induction principle states that the domain has to be organized in a way that all properties of a
number can be iteratively reduced to a property of zero. Since we allow both positive and negative
integers, the induction has to go both ways.
ind: (P(0) ∧ (∀x)(0<x⊃P(x-1)⊃P(x)) ∧ (∀x)(x<0⊃P(x+1))⊃P(x)) ⊃ (∀x)P(x)

Like substitution, the induction principle is an axiom scheme. It has to be instantiated for every
predicate that is used in the set of formulas under consideration.
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Peano Arithmetic

Most axiomatizations of arithmetic are based on the Peano axioms. These axioms characterize the
natural numbers together with the operations + and *. If we include the axioms of equality, then
Peano Arithmetic can be defined as
Peano Arithmetic ≡ L(=,+,*,0,1; ref, sym, trans, subst,

not-surjective, injective, induction,

functionality+, add-base, add-step,

functionality∗, mul-base, mul-step )

where the axioms are as follows
Equality Axioms
ref: (∀x) x=x

sym: (∀x,y) (x=y ⊃ y=x)

trans: (∀x,y,z) ((x=y ∧ y=z) ⊃ x=z)

subst: (∀x,y) (x=y ⊃ P(.,x,.) ⊃ P(.,y,.)) for every P

Successor Axioms
non-surjective (∀x) ∼(x+1 = 0)

injective (∀x,y) (x+1=y+1 ⊃ x=y)

induction (P(0) ∧ (∀x)(P(x) ⊃ P(x+1)) ) ⊃ (∀x)P(x) for every P

Addition Axioms
add-base (∀x) (x+0 = x)

add-step (∀x,y) (x+(y+1) = (x+y)+1)

Multiplication Axioms
mul-base (∀x) (x*0 = 0)

mul-step (∀x,y) (x*(y+1) = (x*y)+x)

If we drop multiplication and its axioms, we get a very simple arithmetical theory called Presburger
Arithmetic, which is quite expressive but still decidable.

Inductively Ordered Integral Domains satisfy the Peano Axioms and vice versa.
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