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Algebraic Structures

Algebraic structures such as groups, rings, and fields, are the foundation for proving the structural
properties of many well known operations on integers, rationals, reals, finite domains such asZp

(wherep may be a prime for encryption), etc. We will introduce the axioms of these structures step
by step and look at possible models

20.1 Semigroups

Mathematically, asemigroupis a setS together with an associative binary operation◦. To formal-
ize semigroups in we need to take the language of first order logic and designate the predicate=
and the function symbol◦ (to be precise, the predicateR◦) as special. We also need the axioms of
equality, the functionality axiom, and associativity of◦. As shorthand notation we write

Semigroup ≡ L(=,◦; ref, sym, trans, subst, functionality, assoc)

where it is automatically understood that the last two axioms are formulated in terms of◦.

Almost all well-known structures are (models of) semigroups. Common examples are
– 〈N, =, +〉, 〈N, =, *〉,
– 〈Z, =, +〉, 〈Z, =, *〉, 〈Z, =

2
, +〉, (wherex =

2
y ≡ x = y mod 2)

– 〈Q, =, +〉, 〈R, =, +〉,
– 〈Σ∗, =, ◦〉, (where◦ is the string append operation).

It is easy to define domains and operations that are not semigroups. As an example take the domain
D = Z with subtraction as interpretation of◦. Clearly(10-5)-3is not the same as10-(5-3).

Most of the above models also satisfy the commutativity axiom. However, it is not possible to
proveSemigroup ⊃ comm, as there are semigroups like〈Σ∗, =, ◦〉 that are not commutative.

Q: Can you give a counterexample?

Using the tableau method one can construct a finite (2-element) counterexample for this state-
ment. For instance, the operation◦ over the domainD= {1,2} with x◦y = y is associative but not
commutative.

20.2 Monoids

Monoidsare semigroups that have anidentity(or neutral) element. Given the experience we have
gathered so far, their formalization is straightforward.

Monoid ≡ L(=,◦,id; ref, sym, trans, subst, functionality, assoc, ident)

where the axiom of identity is

ident: (∀x)( x◦id = x ∧ id◦x = x)
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Of course, we could also avoid designating and axiomatizingthe parameterid and formulate an
axiom about the existence of a unique neutral element.

ident-exists: (∃!id)(∀x)( x◦id = x ∧ id◦x = x)

The advantage of doing so is that the models of monoids are also models of semigroups, that is we
don’t have to extend them by a constant. The disadvantage is that we can’t refer to that element in
separate axioms when we extend monoids to groups.

All of the above semigoups are also monoids. ForN, Z, Q, R the identity of+ is 0 and the identity
of * is 1. For strings, the identity is the empty string. If we requirestrings to be non-empty, then
we lose the monoid property, that is〈Σ+, =, ◦〉 is a semigroup but not a monoid.

Again, it is easy to construct a finite semigroup that is not a monoid. Take, for instance,D = {1,2}
with x◦y = y. This is associative but does not have a right identity. TakeD = {1,2} with x◦y = 2.
This is associative, commutative, but doesn’t have a neutral element for 1.

20.3 Groups

Groupsare monoids with inverse elements for◦. We formalize this as

Group ≡ L(=,◦,id; ref, sym, trans, subst, functionality, assoc, ident, inv)

where the axiom about the existence of inverse elements is

inv: (∀x)(∃x̄)( x◦x̄ = id ∧ x̄◦x = id)

In this case, we cannot replace the axiom about the existenceof inverse elements by one about
a designated parameter, as the chice of the inverse element depends on the element to which the
operation◦ shall be applied.

Many of the above monoids are also groups, but some operations do not allow for inverses.
– 〈Z, =, +〉, 〈Z, =

2
, +〉, 〈Q, =, +〉, and〈R, =, +〉, are groups but

– 〈N, =, +〉, 〈N, =, *〉, 〈Z, =, *〉, and〈Σ∗, =, ◦〉 are not.
It is interesting to notice that〈Z, =

2
, -〉 is a group although〈Z, =, -〉 is not. The simple reason

for that is that in this specal case addition and subtractionare identical.〈Z, =
3
, *〉 has an inverse

element for every element but 0.

20.4 Rings

Domains likeZ, Q, andR are characterized by the fact that there are more than just commutative
groups. Besides addition they have a second operation, multiplication, which interacts with addi-
tion in a specific way. The simplest algebraic construct withthis property is aring. A ring is a setS
with two operations+ and* such that〈S,=,+〉 is a commutative group and〈S,=,*〉 is a semigroup.

Ring ≡ L(=,+,*,id; ref, sym, trans, subst,

functionality+, assoc+, ident+, inv+, comm+,

functionality∗, assoc∗
distrib)

where the distributivity axiom is the following

distrib: (∀x,y,z)( x*(y+z) = x*y + x*z ∧ (x+y)*z = z*z y*z)
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A ring that also has an identity for multiplication is calleda ring with unity.

U-Ring ≡ L(=,+,*,id,e; ref, sym, trans, subst,

functionality+, assoc+, ident+, inv+, comm+,

functionality∗, assoc∗, ident∗
distrib)

wheree denotes the identity of*. Since the multiplication operations forZ, Q, R always led to
monoids, these three domains and the factorization groups of Z, that is 〈Z, =, +, *〉,
〈Z, =

2
, +, *〉, 〈Q, =, +, *〉, and 〈R, =, +, *〉, are also rings with unity. Another interesting

ring with unity is the ring of booleans〈B, =, ⇔ , ∨ 〉 with respective identitiesT andF, since can
derive the laws of propositional logic solely from the ring axioms for the operations⇔ and ∨ .
Note that in all these cases the “multiplication” is also commutative.

20.5 Integral Domains

All the concepts so far were not sufficient to distinguish betweenZ, Q, R and the factorization
groups ofZ. However, the integers satisfy another interesting property that is not shared by all the
factorization groups. We know that 0, the identity of addition has no proper divisors: ifi*j=0 then
eitheri or j must be0. Commutative rings that have this property are calledintegral domains.

Integral Domain ≡ L(=,+,*,id,e; ref, sym, trans, subst,

functionality+, assoc+, ident+, inv+, comm+,

functionality∗, assoc∗, ident∗, comm∗,

distrib, Z)

whereZ is the axiom of “no zero divisors”:

Z: (∀x,y)( x*y = id ⊃ (x=id ∨ y=id))

〈Z, =, +, *〉, 〈Q, =, +, *〉, and〈R, =, +, *〉 are integral domains but〈Z, =4, +, *〉, is not, although
〈Z, =

2
, +, *〉 and〈Z, =

3
, +, *〉 are. The distingishing factor betweenZ and its factorization domains

is the existence of a strict linear order onZ and the induction principle. We will discuss this in the
next lecture.

20.6 Fields

What distinguishes the rationals from the integers? They are “more complete” in the sense that
they offer inverses for multiplication too – except, of course for 0. Integral domains that have this
additional property are calledfields.

Field ≡ L(=,+,*,id,e; ref, sym, trans, subst,

functionality+, assoc+, ident+, inv+, comm+,

functionality∗, assoc∗, ident∗, inv’∗, comm∗,

distrib, Z)

Note that the axiom about the exstence of inverses for* needs to be slightly different.

inv’∗: (∀x)(∼(x=id) ⊃ (∃x̄)( x*x̄ = e ∧ x̄*x = e))

〈Q, =, +, *〉 and〈R, =, +, *〉 are fields but〈Z, =, +, *〉 is not. Interestingly,〈Z, =
3
, +, *〉 is a

field too, although〈Z, =
2
, +, *〉 and〈Z, =4, +, *〉 are not. Rationals and reals also have a density

property with respect to a strict linear order and reals satisfy the axiom of the existence of least
upper bounds, limits of converging sequences, or other variations of the “completeness” axiom.
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