
Applied Logic Lecture 19: Expressing Mathematical Concepts (I)
CS 4860 Spring 2009 Tuesday, March 31, 2009

In the lectures so far we have studied the mathematics of propositional and first-order logic it-
self. We have described syntax, semantics and several calculi for constructing logical proofs. We
have investigated metamathematical properties such as correctness, completeness, decidability, and
compactness, but we haven’t looked into “applied” logic yet.

We will now show how to make use of the formal apparatus in a rigorous account of mathematics.
After all, this was the main purpose for developing formal logics: they should provide an “inde-
pendent” mechanism for checking mathematical arguments and help removing ambiguities in the
formulation of mathematical theories.

A mathematical theory usually proceeds byintroducingnew mathematicalconcepts, givingaxioms
that uniquely specify the properties of these concepts, andthen proving new insights in the form
of theoremsthat can bederivedfrom the axioms. To make sure that the theory doesn’t lead to non-
sensical results one also has to prove that the axioms are consistent. Mathematicians with a more
constructive mindset also prove that the new concepts can besimulated by already existing ones
and that in this simulation the axioms actually become theorems. The account of real numbers, for
instance, can be given in a completely axiomatic way but one could also describe real numbers as
Cauchy sequences of rationals, which in turn are described as pairs of integers.

First-order logic is well suited to make the mathematical method more precise. Mathematical
concepts are denoted by predicate symbols and axioms are represented by sets of formulas that
will be added as assumptions whenever a statement about the properties of these concepts has to
be proven. As a shorthand notation we will sometimes writeL(ops; axioms) to denote the formal
mathematical theory that is based on the operationsops and the axiomsaxioms. The completeness
theorem of first-order logics tells us that a formula can be derived in finitely many steps if it is a
valid theorem of the theory. However, compactness tells us that the set of axioms needs to be
denumerable. Anything that cannot be formulated that way isout of the reach of first-order logic.

Using first-order logic as foundation for expressing mathematics is aconservativeapproach: the
language of first-order logic will remain unchanged while wedesignate a few predicates as special
and provide axioms for these predicates. The obvious advantage of doing so is that we can rely on
the results that we have accomplished so far: we can use first-order tableaux or refinement logic to
prove theorems about equality, functions, and later algebraic structures, integers, small algorithms,
etc. and know that these proofs are correct and that every true statement of the theory can actually
be proven that way. We don’t have to extend the proof calculusanymore (which would require us
to prove correctness and completeness again) – we simply addaxioms.

However, there is also a drawback to this approach. With an increasing number of axioms, formal
reasoning becomes more and more complex, as the size of the formula to be fed to the proof
system grows with the number of axioms provided, even if not all of them are actually used in
the proof. Many simple properties become astonishingly difficult to prove, as one has to isolate
and instantiate the relevant axiom first before they can be used as “reasoning rule”. Furthermore,
mathematical theories are usually based on a “carrier set” (or type) S on which the operations
and axioms are defined. While first-order logic can emulate a simple type structure it becomes
increasingly difficult to reason about operations on types that related (likeN, Z, Q, andR) or
constructed from other types.
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At the end of this course we will therefore explain how to makemany of the designated predicates
primitives of our formal language and convert axioms into corresponding proof rules. This will
make the proof process much simpler and more elegant, but requires us to go over issues such as
correctness, completeness, and compactness again.

For now, however, we will proceed by expressing mathematical concepts within the language of
first order logic.

19.1 Equality

Equality is probably the most fundamental concept in mathematics. It allows us to treat two objects
x andy as undistinguishable: every property ofx holds in the same way fory as well. In mathe-
matics equality is usually described as a binary predicateE( , ) that comes with three axioms:

ref: (∀x) E(x,x)

sym: (∀x,y) (E(x,y) ⊃ E(y,x))

trans: (∀x,y,z) ((E(x,y) ∧ E(y,z)) ⊃ E(x,z))

These axioms describe the usual reflexivity, symmetry, and transitivity laws of equality. But they
are not sufficient to characterize what equality is really about.

Q: Why are these axioms insufficient?

To see that the three axioms do not uniquely specify equalitywe have to take a closer look at the
possible semantical models of these axioms. Amodelfor a set of axioms (see Smullyan page 49) is
a universeU (sometimes also called adomainD) and an interpretationI of all the predicate symbols
and parameters within that universe such that all the axiomsevaluate to true. If the set of axioms
is finite we write a model for a theoryL(P1, .., Pn; ax1, .., axk) as〈D, RP1, .., RPn, ca1 , .., cam〉,
whereRPi is the relation that interprets the predicatePi andcaj is the element ofD that interprets
the parameteraj occurring in the axioms.

Obviously there are many models for the equality predicate,not all of them beingstandard models,
i.e. the models that one would conventionally have in mind. For instance, when we talk about the
integers,〈Z,x=y〉 is the model of equality we have in mind, but〈Z,x=y mod 2〉 is also a model.
In fact, the above three axioms are only sufficient to characterize anequivalence relation. The law
(∀x,y) (E(x,y) ⊃ P(x) ⊃ P(y)) cannot be proven from the axioms.

The reason for this is that this formula is not true in every model of the three axiomsref, sym, and
trans. For instance, ifP(x) is interpreted as “x is a positive integer”, thenP(1) would be true in
〈Z,x=y mod 2〉 butP(-1) would be false although1=−1 mod 2. Thus if we want to characterize
equality instead of a simple equivalence relation, we need to add more axioms that exclude all the
models that do not describe an equality.

Q: What axioms are missing?

The best way to describe an equality is to characterize undistinguishability: ifx is equal toy then
we can replacex by y in every formula without changing its meaning. This insightis expressed by
the so-calledsubstitution axiom.

subst: (∀x,y) (E(x,y) ⊃ P(..,x,..) ⊃ P(..,y,..))

Actually, this axiom is not a pure axiom but anaxiom schemethat needs to be instantiated for every
predicate symbol that occurs in a formal theory and for everyargument position in that predicate.
Thus a first-order theory usually has to include a huge (but finite) number of substitution axioms.
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On the other hand, the substitution axiom (scheme) is extremely powerful, as it simplifies many
arguments that are quite difficult to expess with just reflexivity, symmetry, and transitivity. In fact,
both the symmetry and the transitivity axiom can now be derived using reflexivity and substitution.
For instance, the symmetry law can be proven with he following instance of the substitution axiom:

(∀x) E(x,x), (∀x,y,z) (E(x,y) ⊃ E(x,z) ⊃ E(y,z)) ⊢ (∀x,y) (E(x,y) ⊃ E(y,x))

allR, allR, impR

(∀x) E(x,x), (∀x,y,z)(E(x,y) ⊃ E(x,z) ⊃ E(y,z)) E(x,y) ⊢ E(y,x)

allL x, allL y, allL x

(∀x) E(x,x), E(x,y) ⊃ E(x,x) ⊃ E(y,x) E(x,y) ⊢ E(y,x) impL

1. (∀x) E(x,x), E(x,y) ⊢ E(x,y) axiom 2

2. (∀x) E(x,x), E(x,x) ⊃ E(y,x), E(x,y) ⊢ E(y,x) impL

2.1. (∀x) E(x,x), E(x,y) ⊢ E(x,x) allL x

E(x,x), E(x,y) ⊢ E(x,x) axiom 1

2.2. (∀x) E(x,x), E(y,x), E(x,y) ⊢ E(y,x) axiom 2

Using substitution the transitivity law can even be derivedwithout using the reflexivity axioms.
We leave that as an exercise to the reader.

An important derived concept is the unique-existence operator, which makes it possible to express
that a mathematical object can be uniquely specified by a given property. We define

(∃!x)P(x) ≡ (∃x)(P(x) ∧ (∀y)(P(y) ⊃ E(x,y)))

whereP stands for an arbitrary unary predicate. Forn-ary predicates this operator can be defined
accordingly. We will need this operator in many of the subsequent formalizations.

19.2 Functions

Although functions are a part of the term language in many accounts of first-order logic, they
are not considered fundamental in a rigorous approach to mathematics. Instead they are defined
by their graph, i.e. the predicate that describes the input-output behavior of the function. Thus
formally, n-ary Functionsare described by(n+1)-ary predicates. A unary functionf , for instance
is described by a predicateRf , whereRf(x,y) is supposed to express thatf(x)=y. To ensure that
the predicate does in fact represent a function we need to state two axioms.

functionality: (∀x)(∃!y) Rf(x,y)

functional equality: (∀x,x’,y,y’)((E(x,x’) ∧ Rf(x,y) ∧ Rf(x’,y’)) ⊃ E(y,y’))

The functionality axiom guarantees thatRf specifies a function and not just an arbitrary relation:
for every “input” x there must be an output “y” and that output must be unique. The axiom
of functional equality states that equal inputs must lead tothe same output. While this axiom
may appear trivial (and can, in fact, be derived from substitution and functionality), it becomes
important in the formalization of residue classes likeZ
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will give the same result.

Q: How do we prove functional equality?

Both axioms are againaxiom schemes: they have to be stated for every function symbol to be
introduced. For n-ary functions, we have to state them for the appropriate (n+1)-ary predicate
accordingly.
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For most function symbols we may want to give additional axioms characterizing their specific
properties. For instance, we will deal quite often withbinary operators, usually written ininfix
format x◦y. For some of these operators, we may want to require additional properties such as
commutativity or associativity.

comm: (∀x,y,z) (R◦(x,y,z) ⊃ R◦(y,x,z))

assoc: (∀x,y,z,s,t,w) (R◦(x,y,s) ⊃ R◦(s,z,w) ⊃ R◦(y,z,t) ⊃ R◦(x,t,w))

Note that the commutativity axiom would usually be written as

(∀x,y,z,z) (R◦(x,y,z) ⊃ R◦(y,x,z’) ⊃ E(z,z’))

because offunctionality, however, that is equivalent to the shorter form given above.

Further axioms depend on what else we can state about the domain. We will revisit this issue once
we have introduced axioms that describe, specific domains such as the integers or reals.

Using (n+1)-ary predicates instead of the conventional function notation makes writing formulas
a bit awkward. From now on we will therefore writef(x)=y instead ofRf(x,y) and even use
infix notation, where possible. It should be understood, however, that this is just anotational
abbreviationand that we cannot usef(x)=y like an ordinary equality. If we were to describe
injectivity or surjectivity of a functionf , for instance, then the usual formulation of the axioms

inj-f: (∀x,y) (f(x)=f(y) ⊃ x=y)

surj-f: (∀y)(∃x)(f(x)=y)

is actually just an abbreviation for the following formulas

inj-f: (∀x,y,z)(Rf(x,z) ∧ Rf(y,z) ⊃ E(x,y))

surj-f: (∀y)(∃x)(Rf(x,y))

19.3 Defining Constants

Constants are best described by their effect on operators. The integer 0, for instance is known to
be the neutral element of addition and the neutralizing one of multiplication. After introducing the
axioms for + and *, one could therefore characterize 0 by the axiom

zero: (∀x)(x+0= x ∧ x*0 = 0)

Alternatively, if one wants to avoid designating and axiomatizing parameters, one may formulate
an axiom stating the existence of a unique element with the desired properties.

zero-exists: (∃!zero)(∀x)(x+zero= x ∧ x*zero= zero)

19.4 Ordering Relations

An ordering relation is a binary predicateLE( , ) that is very similar to an equivalence relation
except that symmetry is replaced by antisymmetry.

le-ref: (∀x) LE(x,x)

antisym: (∀x,y) ((LE(x,y) ∧ LE(y,x)) ⊃ E(x,y))

le-trans: (∀x,y,z) ((LE(x,y) ∧ LE(y,z)) ⊃ LE(x,z))

Both ordering relations and equalities are conventionallywritten in infix notation with predefined
predicate symbols. We will adopt this convention from now onand writex≤y instead ofLE(x,y)
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andx=y instead ofE(x,y). One has to keep in mind, that these are only notational abbreviations
for the “real” formulas, since otherwise we would have to redefine the language of first-order logic.
With these notational changes the three axioms receive a more familiar form.

le-ref: (∀x) x≤x
antisym: (∀x,y) ((x≤y ∧ y≤x) ⊃ x=y)

le-trans: (∀x,y,z) ((x≤y ∧ y≤z) ⊃ x≤z)

Note that ordering relations require the existence of an equivalence predicate. It is, however,
possible to axiomatizestrict orderswithout referring to an equality. A strict order is a binary
(infix) predicate< that satisfies the following axioms

lt-asym: (∀x,y) ((x<y ⊃ ∼(y<x))
lt-trans: (∀x,y,z) ((x<y ∧ y<z) ⊃ x<z)

These two axioms also imply the irreflexivity of
strict orders. The formula(∀x)∼(x<x) can be de-
rived by instantiating the axiom of antisymmetry,
as the tableau proof to the right shows.

Typical models for a strict order are the conven-
tional less-than relations on natural numbers, inte-
gers, rationals, or reals. One could, however, also
define a strict order on booleans, with false being

Flt-asym ⊃ ∼(x<x)

Tlt-asym

F∼(x<x)

Tx<x ⊃ ∼(x<x)

Tx<x

Fx<x T∼(x<x)

× ×
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less than true. Orders also don’t have to be linear. The (partial) order of nodes in a tree, for
instance, satisfies the axioms for orders as well.

Strict orders can be derived from standard orders and vice versa if one has equality. One could
define x≤y ≡ x<y ∨ x=y or x<y ≡ x≤y ∧ ∼(x=y), depending on which of the two predi-
cates is axiomatized. It is easy to derive the correspondingaxioms from the respective other ones
and the equality axioms.
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