Applied Logic
 Handout for Lectures 19 \& 20: Expressing Mathematical Concepts
 CS 4860 Spring 2009

Formalizing Fundamental Concepts

- Equality is a binary predicate $\mathrm{Eq}_{(-,}$) that comes with three axioms

```
ref: ( }\forall\textrm{x})\textrm{E}(\textrm{x},\textrm{x}
sym: (\forallx,y) (E(x,y) \supset E(y,x))
trans: (\forallx,y,z) ((E(x,y) ^ E(y,z)) \supset E(y,x))
```

In addition we need an axiom stating that we can replace equal for equal.

```
subst: ( }\forall\textrm{x},\textrm{y})(\textrm{E}(\textrm{x},\textrm{y})\supset\textrm{P}(..,\textrm{x},\ldots) \supset\textrm{P}(..,y,\ldots)
```

This is an axiom scheme that needs to be instantiated for every predicate symbol that occurs in the set of formulas under consideration.
An important derived concept is the unique-existence operator

$$
(\exists!\mathrm{x}) P(\mathrm{x}) \equiv(\exists \mathrm{x})(P(\mathrm{x}) \wedge(\forall \mathrm{y})(P(\mathrm{y}) \supset \mathrm{E}(\mathrm{x}, \mathrm{y})))
$$

- n-ary Functions can be described by ($\mathrm{n}+1$)-ary predicates.

A unary function f is described by a predicate R_{f}, where $\mathrm{R}_{f}(\mathrm{x}, \mathrm{y})$ is supposed to express that $f(\mathrm{x})=\mathrm{y}$. We need two axioms.

```
functionality: ( }\forall\textrm{x})(\exists!\textrm{y})\mp@subsup{\textrm{R}}{f}{}(\textrm{x},\textrm{y}
```


These axioms have to be stated for every function symbol to be introduced. Functional equality can be derived from substitution. Most commonly we will deal with binary operators, usually written in infix format xoy. We may want additional properties such as commutativity or associativity.

```
comm: (\forallx,y,z) (Ro(x,y,z) \supset R。(y,x,z))
```


As abbreviation we write $f(\mathrm{x})=\mathrm{y}$ instead of $\mathrm{R}_{f}(\mathrm{x}, \mathrm{y})$ and use infix notation where possible.

- Constants are best described by their effect on operators. One could therefore characterize the integer 0 , for instance, by the axiom

```
zero: ( }\forall\textrm{x})(\textrm{x}+0=\textrm{x}\wedge\textrm{x}*0=0
```

Alternatively, one may state the existence of a unique element with the desired properties.

```
zero-exists: (\exists!zero) ( }\forall\textrm{x})(\textrm{x}+\mathrm{ zero = x \ ^ x*zero = zero)
```

- Ordering Relations are binary predicates $\operatorname{LE}\left({ }_{(},{ }_{-}\right)$with the following axioms

```
le-ref: ( }\forall\textrm{x})\textrm{LE}(\textrm{x},\textrm{x}
antisym: (\forallx,y) ((LE (x,y) ^ LE (y,x)) \supset E(x,y))
le-trans: ( }\forall\textrm{x},\textrm{y},\textrm{z})((\operatorname{LE}(\textrm{x},\textrm{y})\wedge\textrm{LE}(\textrm{y},\textrm{z})) \supset\textrm{LE}(\textrm{x},\textrm{z})
```

From now on we write $x \leq y$ instead of $\operatorname{LE}(x, y)$ and $x=y$ instead of $E(x, y)$.
A strict order is a binary (infix) predicate $<$ that satisfies the following axioms

```
lt-asym: ( }\forall\textrm{x},\textrm{y})((\textrm{x}<\textrm{y}\supset~~(\textrm{y}<\textrm{x})
lt-trans: ( }\forall\textrm{x},\textrm{y},\textrm{z})((\textrm{x}<\textrm{y}\wedge\textrm{A}<\textrm{y}<\textrm{z}) \supset\textrm{x}<\textrm{z}
```


Algebraic Structures

We denote a mathematical structure with operations op and axioms axioms by \mathcal{L} (ops, axioms).
A semigroup is a set S together with an associative binary operation 0 .

```
Semigroup \equiv\mathcal{L}(=,○; ref, sym, trans, subst, functionality, assoc)
```

where the last two axioms are formulated in terms of the operator 0 .
Monoids are semigroups hat have an identity (or neutral) element.

```
Monoid \equiv \mathcal{L(=,o,id; ref, sym, trans, subst, functionality, assoc, ident)}
```

where the axiom of identity is

$$
\text { ident: } \quad(\forall x)(x \circ i d=x \wedge \text { idox }=x)
$$

Groups are monoids with inverse elements for ${ }^{\circ}$. We formalize this as

```
Group \equiv\mathcal{L}(=,o,id; ref, sym, trans, subst, functionality, assoc, ident, inv)
```

where the axiom about the existence of inverse elements is

```
inv: ( }\forall\textrm{x})(\exists\overline{\textrm{x}})(\textrm{x}\circ\overline{\textrm{x}}= id \wedge \overline{x}\circ\textrm{x}= id
```

A ring is a set S together with two operations + and * such that $\langle S,=,+\rangle$ is a commutative group and $\left\langle S,=,{ }^{*}\right\rangle$ is a semigroup.

```
Ring }\equiv\mathcal{L}(=,+,*,id; ref, sym, trans, subst
    functionality+, assoc+, ident+, inv+, comm+,
    functionality*, assoc*, distrib)
```

where the distributivity axiom is the following

```
distrib: ( }\forall\textrm{x},\textrm{y},\textrm{z})(\textrm{x}*(\textrm{y}+\textrm{z})=\textrm{x}*\textrm{y}+\textrm{x}*\textrm{z}\\wedge(\textrm{x}+\textrm{y})*\textrm{z}=\textrm{z}*\textrm{z}y*z
```

A ring that also has an identity for multiplication is called a ring with unity.

```
U-Ring }\equiv\mathcal{L}(=,+,*,id,e; ref, sym, trans, subst
    functionality+, assoc+, ident+, inv+, comm+,
    functionality*, assoc*, ident*, distrib)
```

Commutatives rings where the identity of + has no proper divisors are integral domains.

```
Integral Domain \equiv\mathcal{L}(=,+,*,id,e; ref, sym, trans, subst,
    functionality+, assoc+, ident+, inv+, comm}+
    functionality*, assoc*, ident*, comm
```

where Z is the axiom of "no zero divisors":

```
Z: (\forallx,y)( x*y = id \supset (x=id v y=id))
```

Integral domains that offer inverses for multiplication too are called fields.

```
Field \equiv\mathcal{L}(=,+,*,id,e; ref, sym, trans, subst,
    functionality+, assoc+, ident+, inv+, comm}+
    functionality*, assoc*, ident*, inv'*, comm
```

Note that the axiom about the exstence of inverses for $*$ needs to be slightly different.

```
inv'*: ( 
```

