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Now that we have introduced a proof calculus for first-order logic we have to address the usual
questions again, that always come up when dealing with formal proof systems.

(1) Is the tableau method correct? Can we be sure that a proven formula is in fact valid?

(2) Is it complete? Can we prove every valid formula with the tableau method?

(3) Is it decidable? Does it always tell us whether a formula is valid or not?

(4) What about compactness? What does the satisfiability of finite sets of formulas tell us?

(5) Are there proof strategies for building first-order tableaux that are more successful or more
efficient than others?

17.1 Correctness of First-Order Tableaux

To prove the correctness of the tableau method, one has to show thatthe origin of a closed tableau
is unsatisfiableor, equivalently, that a tableau is satisfiable and cannot beclosed whenever the
formula at its origin is satisfiable. The basic structure of the proof is the same as the one for
propositional logic, so we just formulate the key insights here.

Let U be an arbitrary universe andv be a first-order valuation ofEU (ϕ is the identity mapping).

F1: α is true underv, if and only if α
1
andα

2
are true underv

F2: β is true underv, if and only if at least one ofβ
1
andβ

2
is true underv

F3: γ is true underv, if and only if γ(k) is true underv for everyk ∈U

F4: δ is true underv, if and only if δ(k) is true underv for at least onek ∈U

These facts follow immediately from the definition of first-order valuations onEU . As a conse-
quence we can show the following laws about the satisfiability of sets of formulas with parameters.

Let S be any set of formulas

G1: If S is satisfiable andα ∈S, thenS∪{α
1
,α

2
} is satisfiable

G2: If S is satisfiable andβ ∈S, thenat least one ofS∪{β
1
} andS∪{β

2
} is satisfiable

G3: If S is satisfiable andγ ∈S, thenS∪{γ(a)} is satisfiablefor every parametera

G4: If S is satisfiable andδ ∈S, thenS∪{δ(a)} is satisfiablefor every parametera that does not
occur inS

The first three laws are obvious but the last one is not, as it shows how to represent the semantical
“for at least onek ∈U” by a syntactical requirement “for every new parametera”.

Proof. Let I = (U , ϕ, ι) be an interpretation such that allA ∈S are true underI. Sinceδ ∈S, there
must be at least one parametera such thatδ(a) is true underI.1

Let k=ϕ(a) ∈U and defineI ′ = (U , ϕ′, ι) with ϕ′(b) =

{

ϕ(b) if b occurs inS
k otherwise

.

ThenI ′(A) = I(A) = t for all A ∈S and for every parametera′ that does not occur inS we have
ϕ’(δ(a′)) = ϕ(δ(a)) = k and thusI ′(δ(a′)) = I(δ(a)) = t. HenceS∪{δ(a′)} is satisfiable. ⊓⊔

1This is not entirely true if there are elementsu in the universe that have no parametera with ϕ(a) = u. In that
case the proof argument needs a few more details.
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The remainder of the correctness proof is almost identical to the propositional case. We have to
prove that every tableau with a satisfiable origin contains at least one satisfiable path.

Theorem 17.1 LetT be an arbitrary tableaux whose root is satisfiable. Then there is a pathθ in
T that is uniformly satisfiable.

Proof. We use structural induction on tableau trees.

base case: If T has just a single point, then letθ be the path consisting of the root ofT .

step case: Assume the statement holds for someT . Let T
1
be a direct extension ofT andI be a

model for the root ofT
1
. SinceT andT

1
have the same root there is a satisfiable pathθ in T .

We consider 5 cases (the first 3 are identical to what we had before)

(1) If T
1
doesnot extendT at θ, thenθ is a satisfiable pathθ in T

1
.

(2) If T
1
extendsT atθ by someα

i
, then we know thatα is onθ. Thusθ

1
=θ◦α

i
is a satisfiable

path inT
1
by G1.

(3) If T
1
extendsT at θ by β

1
andβ

2
thenβ is onθ andθ

1
=θ◦β

1
or θ

1
=θ◦β

2
is a satisfiable

path inT
1
by G2.

(4) If T
1
extendsT atθ by someγ(a), thenγ is onθ andθ

1
=θ◦γ(a) is a satisfiable path inT

1

by G3.

(5) If T
1

extendsT at θ by someδ(a) thenδ is on θ anda does not occur in any of the
formulas ofθ. Thusθ

1
=θ◦δ(a) is a satisfiable path inT

1
by G4.

⊓⊔

As a consequence, every closed tableau has an unsatisfiable root, which means that the (unsigned)
formula at the root of the tableau must be valid.

17.2 Completeness

Proving the completeness of a first-order calculus gives us Gödel’s famous completeness result.
Gödel proved it for a slightly different proof calculus, and the proof that we will show here goes
back to Beth and Hintikka. Let us briefly resume the propositional case.

The key to the completeness proof was the use of Hintikka’s lemma, which states that every down-
ward saturated set, finite or not, is satisfiable. We then showed that every open and complete path
is in fact a Hintikka sequence. Putting these two things together we reasoned that the root of an
open and complete tableau must be satisfiable. Thus a complete tableau for a valid formula cannot
be open which means that every tableau for a valid formula will eventually close.

We will prove the first order case along these lines, but have to keep in mind that several things
have changed.

• The definition of a valuation now includes quantifiers.

• The definition of Hintikka sets must takeγ andδ formulas into account.

• The notion of a complete tableau needs to be adjusted, because there is now the possibility of
non-terminating proof attempts.
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Fortunately, we can easily make the necessary adjustments and then proceed as before. First, let
us define first-order Hintikka sets. AHintikka Set for a universeU is a setS of U-formulas such
that for all closed U-formulasA, α, β, γ, andδ the following conditions hold.

H0 : If A is atomic andA ∈ S then Ā 6∈ S

H1 : If α ∈ S then α
1
∈ S ∧ α

2
∈ S

H2 : If β ∈ S then β
1
∈ S ∨ β

2
∈ S

H3 : If γ ∈ S then ∀k ∈U . γ(k) ∈ S

H4 : If δ ∈ S then ∃k ∈U . δ(k) ∈ S

The first axiom expresses the openness ofS while the other four state that it is downward saturated.
Note that because of axiom H

3
, Hintikka sets are usually infinite, unless the universe is finite. But

the proof of Hintikka’s lemma that we discussed a few weeks ago did not depend on the fact that
the set is finite, so it can easily be adapted to the first-ordercase.

Theorem 17.2 (Hintikka Lemma) Every Hintikka set is uniformly satisfiable

Proof. Because of axiom H
0
we can define a valuation that satisfies all the atomic formulas inS.

Definev(P (k1, ..., kn
)) =

{

f if FP (k1, ..., kn
) ∈ S

t otherwise

To show thatv satisfies every formulaY ∈S we proceed by structural induction on formulas, keep-
ing in mind that the cases forγ andδ are straightforward generalizations of those forα andβ.

base case: If Y ∈S is an atomic formula thenv[Y ]=t by definition.

step case: Assume the the claim holds for all subformulas ofY .

• If Y is of typeα thenα
1
,α

2
∈S, hence by assumptionv[α

1
]=v[α

2
]=t. With the definition

of first-order valuations we getv[Y ]=t.
• If Y is of typeβ thenβ

1
∈S or β

2
∈S, hencev[β

1
]=t or v[β

2
]=t and thusv[Y ]=t.

• If Y is of typeγ thenγ(k) ∈S and hencev[γ(k)]=t for all k ∈U , thusv[Y ]=t.
• If Y is of typeδ thenδ(k) ∈S and hencev[δ(k)]=t for somek ∈U , thusv[Y ]=t. ⊓⊔

Now what about the completeness of a tableau? In the propositional case, this meant that the
tableau cannot be extended any further, because all formulas have been decomposed. Since the
propositional tableau method terminates after finitely many steps, this was easy to define. In the
first-order case, however, we have to be a bit more careful.

We know that because ofγ-formulas proofs may have infinite branches. But that is not the main
problem, since Hintikka’s lemma also works for infinite sets. However, not every infinite branch
in a tableau is automatically a Hintikka set.

Consider for example, the formula∃x,y.P(x,y), which is certainly not valid. ThusF∃x,y.P(x,y)
is satisfiable and because of the correctness of the tableau method we know that every proof at-
tempt will fail. But doeseveryfailing proof attempt actually give us the Hintikka set thatwe need
to reason thatF∃x,y.P(x,y) mustbe satisfiable?

Certainy not. Just imagine we start decomposing the main formula, which is aγ formula, over and
over again. Then we can go on and on forever without ever touching the innerγ formula and we
get an infinite branch that does not satisfy the third Hintikka axiom for this innerγ formula.
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So our completeness proof cannot rely on an arbitrary attempt to find a tableau proof. After all,
completeness only says thatit must be possible to prove every valid formula correct withthe
tableau methodbut it doesn’t require thatanyattempt will succeed. And the fact that we weren’t
able to find a proof with a not so bright approach doesn’t mean that there is none at all.

Fortunately, we can design a systematic approach that is guaranteed to find a tableau proof, pro-
vided there is one. And we will show that using this systematic method we will find a tableau proof
for every valid formula.

Essentially, a systematic method only has to describe a treatment ofγ formulas that guarantees
axiom H

3
. Theα, β, andδ rules make sure that the other Hintikka axioms are always satisfied.

Q: How can we make sure that allγ formulas are eventually covered completely?

We have to proceed similarly to an enumeration of lists of integers. We modify the extension
procedure for tableaux in a way that eachγ formula, and thus every other formula as well, will be
revisited on a regular basis.

A systematic procedure for proving a first-order formula X

Start with the signed formulaFX and recursively extend the tableau as follows:

• If the tableau is already closed then stop. The formula is valid.

• Otherwise select a nodeY in the tableau that is ofminimal levelwrt. the still unused nodes
and extendeveryopen branchθ throughY as follows:

– If Y is α extendθ to θ∪{α
1
,α

2
}.

– If Y is β, extendθ to two branchesθ∪{β
1
} andθ∪{β

2
}.

– If Y is γ, extendθ to θ∪{γ(a),γ}, wherea is the first parameter that is not onθ.

– If Y is δ, extendθ to θ∪{δ(a)}, wherea is the first parameter that does not occur in the
tableau tree.

Thus the procedure always copies aγ formula to the end of a branch when it is being considered.
This way we make sure that it is considered over and over again, but that all the other formulas on
the branch are decomposed before that. Thus in the end all theformulas are being used, because
we have only denumerably many parameters. This method is notvery efficient, but it works.

Using the systematic procedure we can give a new definition ofcomplete tableau. A systematic
tableau is calledfinishedif it is either infinite or finite and cannot be extended any further. With
this definition we immediately get the following result.

Lemma 17.3 In every finished systematic tableau, every open branch is a Hintikka sequence.

A detailed proof for this lemma would show by structural induction that the systematic method
does in fact cover all the required formulas. Together with Hintikka’s lemma we get.

Corollary 17.4 In every finished systematic tableau, every open branch is uniformly satisfiable.

As before, the completeness theorem is now an immediate consequence.
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Theorem 17.5 (Completeness theorem for first-order logic)

If a first-order formulaX is valid, thenX is provable. Furthermore the systematic tableau method
will construct a closed tableau forFX after finitely many steps.

The first statement follows from the above corollary by contraposition and the fact that the system-
atic tableau method always “constructs” a finished tableau.As for the second, a closed tableau can
only have finite branches, which – according to König’s lemma – means that it must be finite.

Note that correctness and completeness is preserved again if we require anatomically closed
tableau, i.e. a tableau where branches only close if there is an atomcformula and its conjugate. Cor-
rectness follows from the fact that an atomically closed tableau is certainly a closed tableau, while
the systematic tableau method makes sure that we construct aHintikka sequence if the tableau
does not close (which is the case if it does not close atomically). Hintikka’s lemma thus implies

Corollary 17.6

If a first-order formulaX is valid, thenX the there is an atomically closed tableau forFX.

The corollary, together with the systematic method, also has another important consequence that
will be relevant for the compactness of first-order logic.

Theorem 17.7 (L̈owenheim theorem for first-order logic)

If a first-order formulaX is satisfiable, then it is satisfiable in a denumerable domain.

The proof for this theorem is based on the observation that the systematic tableau method uses only
denumerably many parameters to build a Hintikka sequence ifthe tableau doesn’t close. Since a
tableau with a satisfiable formula at its root cannot close, it must contain an open branchθ with
at most denumerably many parameters. As this branch is uniformly satisfiable it satisfiesX in a
denumerable domain (the subset of the domainU that represents the set of parameters onθ).

Thus if the formula is intended to describe properties of, for instance, the real numbers there will
be a denumerable subset of the real numbers in which the property is already satisfied.
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