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First-Order Logic is the calculus one usually has in mind when using the word “logic”. It is expres-
sive enough for all of mathematics, except for those concepts that rely on a notion of construction
or computation. However, dealing with more advanced concepts is often somewhat awkward and
researchers often design specialized logics for that reason.
Our account of first-order logic will be similar to the one of propositional logic. We will present
• The syntax, or the formal language of first-order logic, that is symbols, formulas, sub-formulas,

formation trees, substitution, etc.
• The semantics of first-order logic
• Proof systems for first-order logic, such as the axioms, rules, and proof strategies of the first-

order tableau method and refinement logic
• The meta-mathematics of first-order logic, which established the relation between the semantics

and a proof system
In many ways, the account of first-order logic is a straightforward extension of propositional logic.
One must, however, be aware that there are subtle differences.

15.1 Syntax

The syntax of first-order logic is essentially an extension of propositional logic by quantification
∀ and ∃. Propositional variables are replaced by n-ary predicate symbols (P , Q, R) which may be
instantiated with either variables (x, y, z, ...) or parameters (a, b, ...). Here is a summary of the
most important concepts.

1. Atomic formulas are expressions of the form Pc1..cn where P is an n-ary predicate symbol and
the ci are variables or parameters.
Note that many accounts of first-order logic use terms built from variables and function symbols
instead of parameters. This makes the formal details a bit more complex.

2. Formulas are built from atomic formulas using logical connectives and quantifiers.
Every atomic formula is a formula.
If A and B are formulas and x is a variable then (A), ∼A, A ∧B, A ∨B, A⊃B, (∀x)A, and
(∃x)A are formulas.

3. Pure formulas are formulas without parameters.
4. The degree d(A) of a formula A is the number of logical connectives and quantifiers in A.
5. The scope of a quantifier is the smallest formula that follows the quantifier.

In (∀x)Px ∨Qx the scope of (∀x) is just Px, while Qx is outside the scope of the quantifier. To
include Qx in the scope of (∀x) one has to add parentheses: (∀x)(Px ∨Qx).
Note that the conventions about the scope of quantifiers differ in the literature.
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6. Free and bound variables are defined similarly to Second-Order Propositional Logic
A variable x occurs bound in A if it occurs in the scope of a quantifier. Any other occurrence of
x in A is free.

7. Closed formulas (or sentences) are formulas without free variables.
This is the default from now on.

8. Substitution: A|xa (or A[a/x]) is the result of replacing every free occurrence of the variable x in
A by the parameter a.
The technical definition is similar to the one for P 2. However, since the term being substituted
for x does not contain variables, capture cannot occur.

9. Subformulas are defined similar to propositional logic.
The only modification is that for any parameter a the formula A|xa is an immediate subformula
of (∀x)A and (∃x)A.

10. The formation tree of a formula F is a representation of all subformulas of A in tree format.
That is, the root of the tree is F .
The sucessor of a formula of the form ∼A is A.
The successors of A ∧B, A ∨B, A⊃B are A and B.
The successors of (∀x)A and (∃x)A are A|xai

for all parameters ai. Note that quantifiers usually
have infinitely many successors.
Atomic formulas have no successors.

15.2 Semantics

The semantics of first-order logic, like the one of propositional logic and P 2, is based on a concept
of valuations. In propositional logic, it was sufficient to assign values to all propositional vari-
ables and then extend the evaluation from atoms to formulas in a canonical fashion. In P 2, the
semantics of quantified formulas was defined in terms of the values of all immediate subformulas:
v[(∀p)A] = (v|pf)[A] ∧B (v|pt )[A].
In first-order logic, we will proceed in the same way. However, since we don’t have propositional
variables anymore, we have to explain the meaning of atomic formulas first.

The standard approach is to interpret parameters by elements of some universe U and n-ary pred-
icates by subsets of Un. A closed formula Pa1..an then expresses the fact that the interpretations
ki ∈U of the ai, taken together as n-tuple (k1, .., kn), form an element of the interpretation of P .

Smullyan’s approach is similar to the above idea but avoids set theory altogether. Instead, he
introduces U -formulas, where the elements of the universe U are used as parameters and defines
first-order valuations as canonical extensions of boolean valuations on the set E

U of all closed
U -formulas. The semantics of arbitrary formulas is then defined by a mapping ϕ from the set of
parameters into U .
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Definition 15.1 A first-order valuation v of EU is an assignment of truth values to elements of EU

such that

1. v is a boolean valuation of EU , i.e.

v[∼A] = t iff v[A] = f

v[A ∧B] = t iff v[A] = t and v[B] = t

v[A ∨B] = t iff v[A]= t or v[B] = t

v[A⊃B] = t iff v[A]= f or v[B] = t

2. v[(∀x)A] = t iff v[A|xk] = t for every k ∈U

v[(∃x)A] = t iff v[A|xk] = t for at least one k ∈U

All valuations can be defined as canonical extensions of atomic valuations, i.e. assignments of
truth values to the atomic formulas in EU . A valuation tree for a formula A is the formation tree
of A together with a consistent assignment of truth values to all the nodes in that tree.
Note that since formation trees are usually infinite, one cannot expect to compute the truth value
of a formula A solely on the basis of a given atomic valuation.

As in propositional logic, the semantics of formulas can also be described via via truth sets.

Definition 15.2 A first-order truth set S (w.r.t. U ) is a subset of of EU such that

1. S statisfies the requirements on propositional truth sets, i.e.

A ∈S iff ∼A 6∈S

A ∧B ∈ S iff A ∈S and B ∈S

A ∨B ∈ S iff A ∈S or B ∈S

A⊃B ∈ S iff A 6∈S or B ∈S

2. (∀x)A ∈ S iff A|xk ∈S for every k ∈U

(∃x)A ∈ S iff A|xk ∈S for at least one k ∈U

It is easy (though tedious) to show that truth sets correspond to valuations in the sense that every
first-order truth set is exactly the set of all formulas that are true under a fixed first-order valuation.

The definition of first-order valuations can be extended to sentences with parameters as follows.
Let ϕ be a mapping from the set of parameters to U . For a formula A define Aϕ to be the result of
replacing every parameter ai in A by ϕ(ai). We say that A is true under ϕ and v if v[Aϕ] = t.
The standard semantics of first-order formulas can be linked to the above as follows. Let E define
the set of all closed formulas. An interpretation of E is a triple I = (U , ϕ, ι), where U is an
arbitrary set, ϕ is a mapping from the set of parameters to U , and ι is a function that maps each
n-ary predicate symbol P to a set I(P )⊆Un (or an n-ary relation over U ).
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An atomic sentence Pa1..an is true under I if (ϕ(a1), ..ϕ(an)) ∈ ι(P ). In this manner, every inter-
pretation induces an atomic valuation v0 (together with ϕ) and vice versa and from now on we will
use whatever notion is more convenient.

A formula A is called satisfiable if it is true under at least one interpretation I (i.e. under at least
one universe U , one mapping ϕ, and one interpretation of the predicate symbols). I is also called
a model of A. A is valid if A is true under every interpretation. These notions can be extended to
sets of formula sin a canonical fashion.

It should be noted that there is a fine distinction between boolean valuations and first-order val-
uations. Boolean valuations can only analyze the propositional structure of formulas. They can-
not evaluate quantified formulas and therefore have to treat them like propositional variables. In
contrast to that first-order valuations can analyze the internals of quantified formulas and extract
information that is unaccessible to boolean valuations.
For instance, a boolean valuations would interpret the logical structure of the formula
(∀x)(Px ∧Qx)⊃(∀x)Px as PQ⊃P , which is obviously not a tautology. In contrast to that, every
first-order valuation would go into the details of (∀x)(Px ∧Qx) and (∀x)Px and evaluate to true.
Thus the formula is valid, but not a tautology.
For the same reason, the formula (∀x)(Px ∧Qx) ∧ (∃x)(∼Px) is truth-functionally satisfiable but
not first-order satisfiable, since there is no first-order valuation (with a non-empty universe) that
can make it true.
First-order valuations provide a more specific analysis than boolean valuations can give. They
agree on quantifier-free formulas, however (Exercise!), and in that sense first-order logic is a
canonical extension of propositional logic.
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