These are preliminary notes, containing only the necessary formalities. If I ever get around to it I will add more explanations

### 14.1 Assignments

Let Var be the type of propositional variables, and let $\mathbb{B}=\{f, t\}$ be the booleans (with $f$ meaning false and $t$ meaning true). An assignment is a function $v: \operatorname{Var} \rightarrow \mathbb{B}$.
Given an assignment $v$, a boolean $b$, and a propositional variable $p$, the "updated" assignment $\left.v\right|_{b} ^{p}$ is the function (in Var $\rightarrow \mathbb{B}$ ) defined by

$$
\left.v\right|_{b} ^{p}(q)= \begin{cases}b & \text { if } q=p \\ v(q) & \text { otherwise }\end{cases}
$$

### 14.2 Semantics of $\mathrm{P}^{2}$

Let $A$ be a $\mathbf{P}^{2}$-formula and let $v$ be an assignment; let $v[A]$ (an abbreviation of value $(A, v)$ ) be the notation for the (boolean) value of $A$ under $v$, and let $v[A]: \mathbb{B}$ be defined recursively as follows:

$$
\begin{array}{ll}
v[\perp] & =f \\
v[p] & =v(p) \\
v[A \supset B] & =\left(\neg_{\mathbb{B}} v[A]\right)_{\mathbb{B}} v[B] \\
v[(\forall p) A] & =\left(\left.v\right|_{f} ^{p}\right)[A] \wedge_{\mathbb{B}}\left(\left.v\right|_{t} ^{p}\right)[A]
\end{array}
$$

where $\neg_{\mathbb{B}}: \mathbb{B} \rightarrow \mathbb{B}, \mathbb{B}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$, and $\wedge_{\mathbb{B}}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ are the standard boolean operators.
For a finite set of formulas $\Gamma$, we define $v_{\wedge}[\Delta]=\bigwedge_{\mathbb{B}}\{v[A] \mid A \in \Delta\}$ and define $v_{\vee}[\Gamma]=\bigvee_{\mathbb{B}}\{v[A] \mid A \in \Gamma\}$, where $\bigwedge_{\mathbb{B}} S$ is the conjunction of the boolean values in the set $S$ and $\bigvee_{\mathbb{B}} S$ is their disjunction. (By convention, $\bigwedge_{\mathbb{B}} \varnothing=t$ and $\bigvee_{\mathbb{B}} \varnothing=f$.) The value $v[\Delta \vdash \Gamma]$ of a sequent can now be defined as $\left(\neg_{\mathbb{B}} v_{\wedge}[\Delta]\right)_{\mathbb{B}} v_{\vee}[\Gamma]$.

Examples: let $v\left(p_{0}\right)=t, v\left(p_{1}\right)=f, v\left(p_{2}\right)=f$

$$
\begin{aligned}
v\left[\left(p_{0} \supset p_{1}\right)\right] & =\left(\neg_{\mathbb{B}} v\left[p_{0}\right]\right) \mathbb{B} v\left[p_{1}\right]=\left(\neg_{\mathbb{B}} t\right)_{\mathbb{B}} f=f \\
v\left[\left(p_{0} \supset\left(p_{0} \supset p_{1}\right)\right)\right] & =\left(\neg_{\mathbb{B}} v\left[p_{0}\right]\right) \mathbb{B} v\left[p_{0} \supset p_{1}\right]=\left(\neg_{\mathbb{B}} t\right)_{\mathbb{B}} f=f \\
v\left[\left(p_{0} \supset p_{0}\right)\right] & =\left(\neg_{\mathbb{B}} v\left[p_{0}\right]\right) \mathbb{B} v\left[p_{0}\right]=\left(\neg_{\mathbb{B}} t\right)_{\mathbb{B}} t=t \\
v\left[\left(p_{0} \supset\left(\forall p_{0}\left(p_{0} \supset p_{0}\right)\right)\right)\right] & =\left(\neg_{\mathbb{B}} v\left[p_{0}\right]\right) \mathbb{B}\left(\left.v\right|_{f} ^{p_{f}}\right)\left[p_{0} \supset p_{0}\right] \wedge_{\mathbb{B}}\left(\left.v\right|_{t} ^{p_{0}}\right)\left[p_{0} \supset p_{0}\right] \\
& =f_{\mathbb{B}}(v[f \supset f]) \wedge_{\mathbb{B}}(v[t \supset t])=f_{\mathbb{B}}\left(t \wedge_{\mathbb{B}} t\right)=t
\end{aligned}
$$

The semantics of $\mathrm{P}^{2}$ can also be defined by reducing a $\mathrm{P}^{2}$-formula into an ordinary propositional formula. Since a variable can only assume two possible values, we can replace every universally quantified formula by $(\forall p) A$ by the formula $A[T / p] \wedge[\perp / p]$, where $T \equiv \perp \supset \perp .{ }^{1}$

[^0]
### 14.3 Rules of $\mathbf{P}^{\mathbf{2}}$

The multiple-conclusioned sequent proof rules for $\mathbf{P}^{2}$ are as follows

| $\perp L$ : | $\Delta, \perp \vdash \Gamma$ | $\begin{gathered} \Delta \vdash A \supset B, \Gamma \\ \Delta, A \vdash B, \Gamma \end{gathered}$ | $\supset R$ |
| :---: | :---: | :---: | :---: |
| $\supset L$ : | $\begin{gathered} \Delta, A \supset B \vdash \Gamma \\ \Delta \vdash A, \Gamma \\ \Delta, B \vdash \Gamma \end{gathered}$ |  |  |
| $\forall L(B):$ | $\begin{aligned} & \Delta, \forall p A \vdash \Gamma \\ & \quad \Delta, \forall p A, A[B / p] \vdash \Gamma \end{aligned}$ | $\begin{aligned} & \Delta \vdash \forall p A, \Gamma \\ & \quad \Delta \vdash A[q / p], \mathrm{I} \end{aligned}$ | $\forall R(q)$ |
| axiom: | $\Delta, A \vdash A, \Gamma$ |  |  |
| thinL : | $\begin{array}{r} \Delta, A \vdash \Gamma \\ \Delta \vdash \Gamma \end{array}$ | $\begin{array}{r} \Delta \vdash A, \Gamma \\ \Delta \vdash \Gamma \end{array}$ | thinR |

The rules for $\exists$ can be derived from the rules given above:

\[

\]

The familiar rules for $\wedge, \vee$, and $\sim$ can also be derived.
An example proof:

$$
\begin{aligned}
\vdash(\forall p . p) \supset \perp & \\
\forall p . p \vdash \perp & \supset R \\
\perp \vdash \perp & \forall L(\perp)
\end{aligned}
$$

Here is a proof that the two definitions of conjunction given above are actually equivalent.
$\vdash A \wedge B \supset(\forall p)((A \supset B \supset p) \supset p)$
$A \wedge B \vdash(\forall p)((A \supset B \supset p) \supset p)$
$A \wedge B \vdash(A \supset B \supset P) \supset P$
$A \wedge B,(A \supset B \supset P) \vdash P$
$1 . A \wedge B \vdash A, P$
$A, B \vdash A, P$
$2 . A \wedge B, B \supset P \vdash P$
$2.1 . A \wedge B \vdash B, P$
$\quad A, B \vdash B, P$
2.2. $A \wedge B, P \vdash P$

$$
\text { 1. } A \wedge B \vdash A, P
$$

$$
A, B \vdash A, P
$$

$$
\text { 2. } A \wedge B, B \supset P \vdash P
$$

$$
\text { 2.1. } A \wedge B \vdash B, P
$$

$$
\text { 2.2. } A \wedge B, P \vdash P
$$

$$
\begin{array}{r}
\supset R \\
\forall R(P) \\
\supset R \\
\supset L \\
\wedge L \\
\text { axiom } \\
\supset L \\
\wedge L \\
\text { axiom } \\
\text { axiom }
\end{array}
$$

[^1]| $\vdash(\forall p)((A \supset B \supset p) \supset p) \supset A \wedge B$ | $\supset R$ |
| :--- | ---: |
| $(\forall p)((A \supset B \supset p) \supset p) \vdash A \wedge B$ | $\forall L(A)$ |
| $(\forall p)((A \supset B \supset p) \supset p),(A \supset B \supset A) \supset A \vdash A \wedge B$ | $\supset L$ |
| $1 .(\forall p)((A \supset B \supset p) \supset p) \vdash A \supset B \supset A, A \wedge B$ | $\supset R$ |
| $(\forall p)((A \supset B \supset p) \supset p), A \vdash B \supset A, A \wedge B$ | $\supset R$ |
| $(\forall p)((A \supset B \supset p) \supset p), A, B \vdash A, A \wedge B$ | axiom |
| $2 .(\forall p)((A \supset B \supset p) \supset p), A \vdash A \wedge B$ | $\forall L(B)$ |
| $((A \supset B \supset B) \supset B), A \vdash A \wedge B$ | $\supset L$ |
| $2.1 . A \vdash A \supset B \supset B, A \wedge B$ | $\supset R$ |
| $A, A \vdash B \supset B, A \wedge B$ | $\supset R$ |
| $A, A, B \vdash B, A \wedge B$ | axiom |
| $2.2 . B, A \vdash A \wedge B$ | axiom |
| $2.2 .1 . B, A \vdash A$ | axiom |
| $2.2 .2 . B, A \vdash B$ |  |


[^0]:    ${ }^{1}$ This reduction technique only works with $\mathbf{P}^{2}$. It cannot be used to reduce first-order logic to propositional logic,

[^1]:    since variables may assume infinitely many values.

