
Applied Logic Lecture 13: Second-Order Propositional Logic (Syntax, Substitution)
CS 4860 Spring 2009 Tuesday, March 3, 2009

These are preliminary notes, containing only the necessary formalities. If I ever get around to it I will add more explanations

13.1 Motivation

Second-Order Propositional Logic (P
2) is a simple propositional theory that provides quantifica-

tion over a very limited range. It allows us to study some of the issues that arise in logics with
quantifiers without having to deal with the full complexity of first-order logic. It’s syntax is much
simpler because it is a higher-order theory, which allows usto simulate all connectives with just
implication and the universal quantifier.

Computationally, Second-Order Propositional Logic (or Quantified Boolean Formulas) is between
Propositional Logic and First-Order logic. Satisfiabilityin Propositional Logic isNP-complete,
(satisfiability in) First-Order logic is undecidable. Second-Order Propositional Logic is still decid-
able, butPSPACE-complete.

13.2 Syntax ofP2

In P
2 we only need propositional variables, a constantbot (for false), implication⊃, and the

universal quantifier∀.

In the following exposition we will use the following symbols as meta-variables

p, q, r, . . . a propositional variable
A, B, . . . aP

2 formula
Γ, ∆, . . . a finite set ofP2 formulas

13.2.1 Formulas ofP2

The formulas ofP2 are generated by

V = p0 | p1 | p2 | · · · · · · (a countably infinite set)
A = V | ⊥ | A⊃A′ | (∀V)A | (A)

Examples:(p0⊃p1), (∀p0)(p0⊃p1), (∀p1)(∀p2)((p2⊃p2)⊃⊥)

Intuitively, the meaning ofP2 formulas is obvious.

Instead of(∀p)A we will sometimes use the notation∀p.A. This notation uses fewer parentheses
and is used in proof systems like Nuprl.

1

13.2.2 Increased Expressiveness

A formula like (∀p0) p0⊃⊥ states that it is impossible to make every propositional formula true.
Statements of this nature could not be expressed in ordinarypropositional logic.

13.2.3 Defined Connectives

Connectives like∼, ∨ , ∧ , and∃ do not have to be included in the basic language ofP
2. Instead,

the can can be defined in terms of⊥, ⊃, and∀:

∼A ≡ A⊃⊥
A ∧B ≡ ∼(A⊃∼B)
A ∨B ≡ (∼A)⊃B
(∃p)A ≡ ∼(∀p∼A)

Some authors use the following definitions, which even make the constant⊥ a defined expression.

⊥ ≡ (∀p)p
∼A ≡ (∀p)(A⊃p)

A ∧B ≡ (∀p)((A⊃(B⊃p))⊃p)
A ∨B ≡ (∀p)((A⊃p)⊃(B⊃p)⊃p)
(∃p)A ≡ (∀q)((∀p.A⊃q)⊃q)

13.3 Substitution

Substitution is the key to describing the meaning of quantified formulas as well as to formal rea-
soning about them. A formula of the form(∀p)A means thatA must be true no matter what we
put in – or substitute – for the variablep. In order to explain substitution, we need to understand
the role of variable occurrences in a formula.

13.3.1 Free and Bound Variables

Quantified variables are considered to bebound in the formula that begins with the corresponding
quantifier. Otherwise they are considered to befree. Free variables stand for arbitary propositional
formulas, which means that the truth of the formula should not change if the variable is instantiated.

For A a formula ofP2, the set of propositional variables that are free inA, denotedFV (A), can
be characterized by the following recursive definition:

FV (⊥) = ∅

FV (p) = {p}
FV (A⊃B) = FV (A)∪FV (B)
FV ((∀p)A) = FV (A) − {p}

2

The set of all propositional variables that occur inA, PV (A), can likewise be defined as

PV (⊥) = ∅

PV (p) = {p}
PV (A⊃B) = PV (A)∪PV (B)
PV ((∀p)A) = PV (A)∪{p}

Examples:
FV (p0⊃p1) = {p0, p1}
PV (p0⊃p1) = {p0, p1}
FV ((∀p0)(p0⊃p1)) = {p1}
PV ((∀p0)(p0⊃p1)) = {p0, p1}
FV ((∀p1)(∀p2)((p2⊃p2)⊃⊥)) = ∅

PV ((∀p1)(∀p2)((p2⊃p2)⊃(∀p3p1))) = {p1, p2, p3}

We can extend the definitions ofFV and PV to finite sets of formulas by taking
FV (Γ) =

⋃
A∈Γ

FV (A) and likewise by takingPV (Γ) =
⋃

A∈Γ
PV (A).

For sequents, the definitions areFV (∆⊢Γ) = FV (∆∪Γ) andPV (∆⊢Γ) = PV (∆∪Γ).

13.4 Defining Substitution

SubstitutionA|pB is the replacement ofall occurrences of the variablep in A by the formulaB.
There are a few issues, however, that one needs to be aware of.

Variables that are bound by a quantifier, must not be replaced, as this would change the meaning.
((∃p)(p⊃∼q))|pq should not result in((∃p)(q⊃∼q)) as the former is a tautology (choosep = ⊥)
while the latter depends on the value ofq (and ths is only satisfiable).

In the same way, a variable must not be replaced by a bound variable, as this may change the
meaning of the formula. For instance, the formula(∃q)((p⊃q) ∧(q⊃p)) is a tautology (choose
q = p), but defining(∃q)((p⊃q) ∧(q⊃p))|p∼q as(∃q)((∼q⊃q) ∧(q⊃∼q) is unsatisfiable.

The formal definition takes both issues into account. In the former case, nothing will be substituted,
in the latter case, variablecapture is avoided by renaming the bound variable first.

Given formulasA andB of P
2 and a propositional variablep, theP

2 formulaA|pB (“A with B
substituted forp”) is, as usual, defined recursively:

⊥|pB = ⊥
p|pB = B
q|pB = q (q 6=p)

(A⊃A′)|pB = (A|pB)⊃(A′|pB)
((∀p)A)|pB = ∀pA
((∀q)A)|pB = ∀q(A|pB) (q 6=p, q 6∈FV (B))
((∀q)A)|pB = ∀q′(A|qq′|

p
B) (q 6=p, q ∈FV (B), q′ 6∈PV (A, B, p))

3

Examples:
(p0⊃p1) |

p0

p2⊃p3
= ((p2⊃p3)⊃p1)

(p0⊃(p0⊃p1)) |p0

p3
= (p3⊃(p3⊃p1))

(p0⊃p0) |
p0

p0⊃p0
= ((p0⊃p0)⊃(p0⊃p0))

(p0⊃(∀p0(p0⊃p0))) |p0

p1
= (p1⊃(∀p0(p0⊃p0)))

(∀p0(p0⊃p3)) |p3

p0
= (∀p1(p1⊃p0))

Again one can extend substitution to finite sets of formulas and then to sequents by letting

Γ|pB = {A|pB | A ∈Γ } and(∆⊢Γ)|pB = (∆|pB)⊢(Γ|pB).

Computer scientists often use the notationA[B/p] instead ofA|pB to denote the substitution of
variables by formulas, while mathematicians like SmullyanpreferA|pB. In the following we will
use the latter for explaining the semantics of formulas (where variables are replaced by truth values)
while we use the former to explain the proof system (which replaces variables by formulas).

4

