
Applied Logic Lecture 12: Properties of Refinement Logic
CS 4860 Spring 2009 Thursday, February 26, 2009

On Tuesday I introduced Refinement Logic as single-conclusioned Gentzen System with two extra
rules,magic andcut. I gave a few examples for using themagic rule but it turned out that this
rule isn’t easy to handle and the resulting proofs are occasionally a bit complicated.

Today we want to investigate the properties of Refinement Logic. There are five questions that we
need to look at.

1. Is it consistent?
2. Is it complete?
3. Can a proof search get wedged?
4. What kind of logic do we get if drop themagic rule?
5. Is it decidable?

To answer the first two questions we will compare Refinement Logic (with magic) to the multi-
conclusioned sequent Gentzen system, which we already knowto be consistent and complete -
because it is isomorphic to block tableaux and that block tableau proofs can be converted into
ordinary tableau proofs and vice versa. We will proceed in three steps.1

1. Refinement Logic withcut can be mapped onto a Refinement Logic withoutcut. This cut
elimination theoremmakes it much easier to prove consistency.

2. Refinement Logic withmagic and cut can be mapped onto the multi-conclusioned sequent
calculus. That gives uscorrectnessandconsistency.

3. The multi-conclusioned sequent calculus can be mapped onto Refinement Logic withmagic and
cut. That gives uscompleteness.

12.1 The cut elimination theorem

We start with the cut elimination theorem, which will help proving consistency. The cut rule

H ⊢ G cut A

H ⊢ A

H, A ⊢ G

is very useful for structuring a proof. One introduces a factA, or a lemma. This fact will be proven
separately and the be used as assumption in the rest of the proof. This technique is particularly
useful if an uses the lemma several times in a proof. But it also helps keep the proof comprehensible
by cutting it into smaller pieces.

It is easy to explain why this rule must be correct but its disadvantage is that it cannot be used
in automated proofs. All other rules (except formagic of course) depend on the outer structure
of a formula on the left or right of the turnstyle. The cut rule, however, can be appliedanytime
and withany formula. Nobody has found a way of automating this properly –finding lemmata
automatically is still a very difficult task.

1Because of the amount of detail I will use slides for this in class.

1

So the question was – do we actuallyneedthe cut rule? Do we lose anything if we drop this rule?
Can we prove more formulas if we use cuts than if we don’t? No, we cannot because the cut rule
is not really necessary – one can prove the same theorems without it.

Theorem 12.1 (Cut elimination) Any formula provable in the single-conclusioned sequent cal-
culus with cut has a single-conclusioned sequent proof thatdoes not use the cut rule.

While this theorem is plausible, a precise proof of this theorem is quite tricky. If you’re interested
you can look up Smullyan’s proof on pages 110–115, but I can’treally recommend this because it
is verydense.

Q: Why should one believe that we can do without the cut rule?

Essentially, it is becausewe have to prove the formula that we use, so we canuse the full proof of
A wheneverA is used.This is the central idea of the proof of the cut elimination theorem. But a
precise proof that uses this idea is difficult to formulate and one has to look at many details. Let
me illustrate why.

Assume we have used the cut rule to prove a goalG and letpf be the sequent proof for the factA.
Now let us look at the proof forH,A ⊢ G. If A were to remain untouched during that proof and
we would use it just at the end in aaxiom rule H,A,H ′ ⊢ A then we could simply replace this
rule application by the proofpf .

But imagine ifA has the formP ∧Q andA is decomposed somewhere in the proofbeforebeing
used. Then we would have to deal with goals of the formH,P,H ′ ⊢ P . Now we have to
analyze the proofpf for A. If it used the ruleandR to decomposeA into P andQ, we could
simply take the proof up to that point, drop theandR rule and the proof part forQ and insert the
rest as proof forP instead of applying theaxiom rule. But if andR was not used to proveA,
thenH must have contained a superformula ofA, which at some point was decomposed into an
occurrence ofA on the left hand side. In this case we could take this proof fragment, decompose
A further intoP andQ and insert this whole proof before applying theaxiom rule.

Now one has to take into account all the other connectives: disjunction, implication, negation and
do the same. And to be precise, you has to provide an inductiveproof becauseA may be a nested
formula that is decomposed into very small pieces. All this tells us how toeliminate a single
application of the cut rulefrom a proof. Now one proceeds inductively and eliminates all the cuts
from bottom to top – assuming that after elimination the remaining proof branch is cut-free.

Of course, after this complex proof of the cut elimination theorem is complete, one tries to make
it more elegant and the result of these considerations is what you see in Smullyan’s book. It is not
an easy proof but the fundamental ideas are not so complicated.

Actually, the argument becomes much easier if one takes evidence construction into account.

H ⊢ G ev = (fun a → b[a])(pf) cut A

H ⊢ A ev = pf

H, a:A ⊢ G ev = g[a]

If a is a label forA andg[a] the evidence forG in the second subgoal andpf the evidence for
A in the first then constructing the evidence forG in the main sequent simply means applying
the function that constructsg[a] from a to the actual evidencepf for A. Eliminating the cut rule
corresponds to simply evaluating that function, that is calculating the evidence that results from

2

replacing every occurrence ofa in g[a] by pf and continuing the computation until the evidence
term cannot be reduced further. Converting the final evidence back into a proof gives us the result
of cut elimination.2

There is also a cost to eliminating cuts. Our proofs will grow. In fact they can grow more than su-
perexponentially – in some cases the size reduction achieved by introducing cuts is non-elementary.
This of course holds only for pathological cases, but one should be aware of this nevertheless.

12.2 Consistency

To prove this consistency, we have to show how to convert a proof in refinement logic into a proof
in a Gentzen system. In fact, we will show that every Refinement Logic rule can be expressed by
a proof fragment in Gentzen’s calculus.

If you start with a single conclusion, then all the right rules except fororR1 andorR2 are the same
in both calculi. TheandL, orL, andaxiom rule are identical as well.

The refinement logic rulesorR1, orR2, impL, and notL are subsumed by the corresponding
Gentzen rules, which do exactly the same except for the fact that they keep more than one conclu-
sion. So any RL proof that uses these rules without can certainly be simulated by a proof that uses
the corresponding rules and keeps the extra conclusions around without ever using them. Thecut
rule can be eliminated andmagic rule can be simulated as follows:

H ⊢ G by cut A ∨ ∼A
[1] H ⊢ A ∨ ∼A by orR

H ⊢ A, ∼A by notR

H, A ⊢ A by axiom

[2] H, A ∨ ∼ A ⊢ G

What aboutfalseL? This rule is actuallyderivableif one has the cut rule, sincef is the same as a
contradiction likeA ∧ ∼A. The following proof fragment shows how to express thefalseL rule
in refinement logic withmagic andcut.

f ⊢ G by magic G

f, G ∨∼G ⊢ G by orL 2

[1] f, G ⊢ G by axiom

[2] f, ∼G ⊢ G by cut ∼∼G
[2.1] f, ∼G ⊢ ∼∼G by notR

f, ∼G, ∼G ⊢ f by axiom

[2.2] f, ∼G, ∼∼G ⊢ G by notL 3

f, ∼G ⊢ ∼G by axiom

Thus we know how to simulate all the rules of refinement logic in the multi-conclusioned calculus
and get the following theorem.

Theorem 12.2 Refinement Logic is consistent

2Obviously the details are equally complex because we need todefine evaluation of evidence terms. But for this we
can rely on the operational semantics of functional programming languages likeML. Note, however, that the resulting
term can grow superexponentially depending on how often thelemmas are actually used.

3

12.3 Completeness

Finally, let us show completeness. Can we really do everything in refinement logic that we could
do in multi-conclusioned sequent systems?

Theorem 12.3 Any formula provable by Gentzen systems can be proved in the single-conclusioned
sequent calculus with magic and cut.

This seems plausible, but how do we prove it? Assuming that westart with a single conclusion –
can we simulate the multi-conclusioned rules by single-conclusioned ones?

Look at the rules and compare them:∧L, ∧R, ∨L, ⊃R, ∼R, andaxiom are really the same. But the
other rules,∨R, ⊃L, and∼L, createan additional conclusion, sowe can’t simulate them directly.

So we have to do something different. If we cannot express therules directly, we have tomimic a
multi-conclusioned proofwith just one conclusion. Look at the meaning of multiple conclusions.
We have said thatH ⊢ G should be understood as: “under the assumption that all the formulas in
H are true we can show that one of the formulas inG is true”. So ifG is G1,, Gn then

provingH ⊢ G is the same as provingH ⊢ G1 ∨G2... ∨Gn

We will use this idea to simulate multi-conclusioned proofsin refinement logic. That is, we will
express every multi-succedent rule that operates onH ⊢G1, G2..., Gn by a series of refinement
logic rules that operate onH ⊢ G1 ∨G2... ∨Gn. Let me introduce an abbreviation:

For a list of formulasG = G1, G2..., Gn we defineG∗ to be the formulaG1 ∨ (G2 ∨(... ∨Gn)).

I put the parentheses around the disjunctions to avoid ambiguities. If I omit parentheses, I mean
exactly this way of parenthesizing. With this abbreviationwe can state our simulation theorem.

Theorem 12.4 LetH = H1, ..., Hm andG = G1, ..., Gn be lists of formulas. IfH ⊢ G is provable
in the multi-conclusioned sequent calculus, thenH ⊢ G∗ is provable in refinement logic.

Q: Why is this enough?

An initial sequent has exactly one conclusion, and the theorem tells us that ifH ⊢ G1 is provable
in the multi-conclusioned sequent calculus then it is also provable in refinement logic.

Note that I said “lists of formulas” and not “sets”. Althoughmulti-succedent rules operate on sets,
we can always assume that we have a standard way of listing theelements of these sets so that we
know howG∗ is related toG = G1, G2..., Gn. I need this only for proof purposes – I don’t change
the calculus.

Proof: We will proceed by induction over the depth of the multi-conclusioned sequent proof and
show how to simulate each proof step in refinement logic.

I will sketch each case and leave the details as an exercise tothe reader.

4

Base Case:If the depth of the proof forH ⊢ G is 1 then the proof must be the application of the
axiom rule to someGi, which also occurs inH asHj.

H1, ...Gi = Hj ..., Hm ⊢ G1, G2, .., Gi, ., Gn

We can essentialy do the same in refinement logic by using the ruleaxiom j. But we must keep
in mind that the multi-conclusioned sequent rules can operate onany element ofG, while we
need to prove

H1, ...Gi = Hj ..., Hm ⊢ G1 ∨(G2 ∨ (..(Gi ∨ .. ∨Gn)))

that is we have a goal formula with a fixed structure. So, to isolateGi, we must move it to the
left of the disjunction. We need four derived proof rules forthis purpose.

H ⊢ A ∨(B ∨C) by orAssocL H ⊢ (A ∨B) ∨C by orAssocR

H ⊢ (A ∨B) ∨C H ⊢ A ∨(B ∨C)

H ⊢ A ∨B by orCommut H ⊢ (A ∨B) ∨C by orCommutL

H ⊢ B ∨A H ⊢ (B ∨A) ∨C

These rules can be derived in Refinement Logic. For instance,we can represent the ruleorCommut
by the following proof fragment, which tells us how to write aprogram (tactic) that applies proof
rules in a way that we get the same effect as applyingorCommut.

H ⊢ A ∨B by cut B ∨A

1. H ⊢ B ∨A

2. H, B ∨A ⊢ A ∨B by orL m + 1
2.1. H, A ⊢ A ∨B by orR1

2.1.1. H, A ⊢ A by axiom m + 1
2.2. H, B ⊢ A ∨B by orR2

2.2.1. H, B ⊢ B by axiom m + 1

So we can write a tactic that performs all these steps and we can considerorCommut as a derived
inference rule.

By applying the four rules we can transform

H1, ...Gi = Hj ..., Hm ⊢ G1, G2, .., Gi, ., Gn

into H1, ...Gi = Hj.., Hm ⊢ Gi ∨ (G1 ∨(G2 ∨ (..(Gi−1 ∨ (Gi+1 ∨ .. ∨Gn)))))

and then proceed by applyingorR1 to get

H1, ...Gi = Hj ..., Hm ⊢ Gi

and now we can applyaxiom j to complete the proof.

Let me show you how this works when you want to isolateG2 out ofG1 ∨(G2 ∨G3).

H ⊢ G1 ∨ (G2 ∨G3) by orAssocL

1. H ⊢ (G1 ∨G2) ∨G3 by orCommutL

1.1. H ⊢ (G2 ∨G1) ∨G3 by orAssocR

1.1.1. H ⊢ G2 ∨ (G1 ∨G3) by orAssocR

In fact, it is possible to write tactics that implement the following two derived rules

H ⊢ G∗ by SwapOut i H ⊢ Gi ∨ G∗
i by SwapIn i

H ⊢ Gi ∨ G∗
i H ⊢ G∗

5

Induction case: Assume that for allH,G, and all multi-conclusioned sequent proofs forH ⊢ G

of depthn we find a refinement logic proof forH ⊢ G∗. We show how to convert a multi-
conclusioned sequent proof of depthn+1 into a refinement logic proof by looking at thefirst
proof rule that was applied.

∧L: If the first step in the deduction was

H1, .Hj = A ∧B..,Hm ⊢ G by ∧L

H1, .Hj = A,B..,Hm ⊢ G

then we can simulate this step by

H1, .Hj = A ∧B..,Hm ⊢ G∗ by andL j

H1, .Hj = A,B..,Hm ⊢ G∗

By the induction assumption we can find a refinement proof for this subgoal because the
multi-conclusioned sequent proof forH1, .Hj = A, B.., Hm ⊢ G has depthn.

∧R: If the first step in the deduction was

H ⊢ G1,..Gi−1, A ∧B, Gi+1,..Gn by ∧R

H ⊢ G1,..Gi−1, A, Gi+1,..Gn

H ⊢ G1,..Gi−1, B, Gi+1,..Gn

We need to show that we can express the following rule in refinement logic:

H ⊢ G1 ∨..Gi−1 ∨ A ∧B ∨ Gi+1 ∨ .. ∨Gn

H ⊢ G1 ∨..Gi−1 ∨ A ∨ Gi+1 ∨ .. ∨Gn

H ⊢ G1 ∨..Gi−1 ∨ B ∨ Gi+1 ∨ .. ∨Gn

By the induction assumption we can find a refinement proof for the “subgoals” because the
corresponding multi-succedent proofs have depthn.

It is sufficient to describe the following derived rule:

H ⊢ A ∧B ∨ G∗
i andR∗

H ⊢ A ∨ G∗
i

H ⊢ B ∨ G∗
i

because if we applySwapOut i before this rule andSwapIn i afterwards, we have exactly
the rule we want to have.

In the rest of this proof we won’t bother with this distinction anymore but always assume
that we operate on the first formula ofG∗.

So how do we implementandR∗? We first cut in the desired subgoalsA ∨ G∗
i andB ∨

G∗
i and then show that they are sufficient to proveA ∧B ∨ G∗

i :

H ⊢ A ∧B ∨ G∗
i by cut (A ∨ G∗

i) ∧ (B ∨ G∗
i)

1. H ⊢ (A ∨ G∗
i) ∧ (B ∨ G∗

i) by andR

1.1. H ⊢ A ∨ G∗
i

1.2. H ⊢ B ∨ G∗
i

2. H, (A ∨ G∗
i) ∧ (B ∨ G∗

i) ⊢ A ∧B ∨ G∗
i by andL

2.1. H, A ∨ G∗
i , B ∨ G∗

i ⊢ A ∧B ∨ G∗
i by orL 1

2.1.1. H, A, B ∨ G∗
i ⊢ A ∧B ∨ G∗

i by orL 2

2.1.1.1. H, A, B ⊢ A ∧B ∨ G∗
i by orR1

2.1.1.1.1. H, A, B ⊢ A ∧B by andR

2.1.1.1.1.1. H, A, B ⊢ A by axiom m+1

2.1.1.1.1.2. H, A, B ⊢ B by axiom m+2

6

2.1.1.2. H, A, G∗
i ⊢ A ∧B ∨ G∗

i by orR2

2.1.1.2.1. H, A, G∗
i ⊢ G∗

i by axiom m+2

2.1.2. H, G∗
i , B ∨ G∗

i ⊢ A ∧B ∨ G∗
i by orR2

2.1.2.1 H, G∗
i , B ∨ G∗

i ⊢ G∗
i by axiom m+1

So we have found an “implementation” ofandR∗

∨L: can be simulated directly as in the case ofandL

∨R: Assuming that we operate on the first formula of the set the first step was

H ⊢ A ∨B, G by ∨R

H ⊢ A, B, G

We need to show that we can express the following rule in refinement logic:

H ⊢ A ∨B ∨ G∗ by orR∗

H ⊢ A ∨(B ∨ G∗)

which is exactly the same asorAssocR

⊃L: If the first step in the deduction has been

H1, .Hj =A⊃B..,Hm ⊢ G by ⊃L
H1, .Hj =A⊃B..,Hm ⊢ A,G

H1, .Hj =B..,Hm ⊢ G

Then we can simulate this first step by

H1, .Hj =A⊃B..,Hm ⊢ G by impL∗

H1, .Hj =A⊃B..,Hm ⊢ A ∨G

H1, .Hj =B..,Hm ⊢ G

To implementimpL∗ we proceed as before

H1, .Hj =A⊃B..,Hm ⊢ G by cut (A ∨G) ∧ (B⊃G)

1. H1, .Hj =A⊃B..,Hm ⊢ (A ∨G) ∧ (B⊃G) by andR

1.1. H1, .Hj =A⊃B..,Hm ⊢ A ∨G

1.2. H1, .Hj =A⊃B..,Hm ⊢ B⊃G by impR

1.2.1 H1, .Hj =A⊃B..,Hm,B ⊢ G

2. H1, .Hj =A⊃B..,Hm, (A ∨G) ∧ (B⊃G) ⊢ G by andL m+1

2.1. H1, .Hj =A⊃B..,Hm, A ∨G, B⊃G ⊢ G by orL m+1

2.1.1. H1, .Hj =A⊃B..,Hm, A, B⊃G ⊢ G by impL j

2.1.1.1. H1, .Hj =A⊃B..,Hm, A, B⊃G ⊢ A by axiom m+1

2.1.1.2. H1, .Hj =B..,Hm, A, B⊃G ⊢ G by impL m+2

2.1.1.2.1. H1, .Hj =B..,Hm, A, B⊃G ⊢ B by axiom j

2.1.1.2.2. H1, .Hj =B..,Hm, A, G ⊢ G by axiom j

2.1.2. H1, .Hj =A⊃B..,Hm, G, B⊃G ⊢ G by axiom m+1

⊃R: If the first step in the deduction has been

H ⊢ A⊃B, G by ⊃R
H, A ⊢ B, G

then we need to show that we can express the following rule in refinement logic:

H ⊢ A⊃B ∨ G∗ impR∗

H, A ⊢ B ∨ G∗

I leave this as exercise.

7

∼L: If the first step in the deduction has been

H1, .Hj = ∼A..,Hm ⊢ G by ∼L
H1, .Hj = ∼A..,Hm ⊢ A,G

then we can simulate this first step by

H1, .Hj = ∼A..,Hm ⊢ G by notL∗

H1, .Hj = ∼A..,Hm ⊢ A ∨G

Since∼A can be viewed as abbreviation forA⊃f this works precisely asimpL∗

∼R: If the first step in the deduction has been

H ⊢ ∼A, G by ∼R
H, A ⊢ G

then we need to show that we can express the following rule in refinement logic:

H ⊢ ∼A ∨ G∗ notR∗

H, A ⊢ G∗

Since∼A can be viewed as abbreviation forA⊃f this works precisely asimpR∗

So in all cases we have shown how to simulate multi-succedentproofs using refinement logic. We
need themagic rule only for implication and negation on the right, so we seewhere it is actually
needed to achieve completeness. So as a result we get:

Theorem 12.5 The Refinement Logic calculus is complete

I have presented the inductive proof in a rule-fashion because this enables us to write an algorithm
that converts multi-succedent proofs into refinement logicproofs. Because of the rulesSwapOut
andSwapIn this proof will in the end be much bigger than the original multi-succedent proof. It
gets even worse if we try to eliminate the cuts as well.

But there is no way out. Although refinement logic proofs are sufficient to prove that a formula
is a tautology, they cannot be as short as multi-succedent proofs. In the worst case, they must be
exponentially longer. For those of you who are interested, here is an example:

Forn ≥ 0 consider the propositional formula classFn

Fn ≡ An ∧ ∧n−1

i=1 (Bi−1⊃(Bi ∨Ai) ∨Bi)
︸ ︷︷ ︸

Oi

∧ ((B0 ∨A0) ∨B0)
︸ ︷︷ ︸

O0

⊃ A0 ∨ ∨n−1

i=0 Bi ∧Ai+1
︸ ︷︷ ︸

Ni

Now if you look at the properties of these formulas you find out

• F0 needs one leaf in Gentzen Systems and Refinement Logic

• there exist a Gentzen proof ofFn with 6n − 2 leaves (branches)

• Fn implies a reduction orderingOj 7−→ Oj+1 7−→ Nj on Refinement Logic proofs

• each (cut free) Refinement Logic proof ofFn requires at least5(2n − 1) leaves

This result, however, describes a pathological case. In theaverage the translation gets much better
results.

8

12.4 Can a proof search get wedged?

The example proof of Pierce’s law that we discussed on Tuesday seems to indicate that. Just imag-
ine we had used a strategy that first tries to decompose the available formulas before attempting
magic. This was a reasonable strategy for the tableau method and for Gentzen Systems. We could
prove it to terminate. But when we apply it to Pierce’s law, our proof gets stuck at the same goal
where the calculus withoutmagic got stuck.

⊢ ((P⊃Q)⊃Q)⊃P by impR

(P⊃Q)⊃P ⊢ P by impL

[1] (P⊃Q)⊃P ⊢ P⊃Q by impR

(P⊃Q)⊃P, P ⊢ Q by ???

[2] P ⊢ P by axiom

No application of the magic rule will help us anymore. Once wehave appliedimpL we are required
to proveQ and a case analysis will not help us to do that.

We get a similar problem with the following two proof attempts for the law of excluded middle.

⊢ P ∨∼P by ∨R1

⊢ P ??

⊢ P ∨∼P by ∨R2

⊢ ∼P ??

Q: What is the reason? Why do proofs in refinement logic get stuck?

The reason is that as soon as we apply theimpL or theorRi rules, we have lost information that
we had before. ApplyingimpL drops the conclusion that we had before and we are left with a
completely different conclusion in the first subgoal. Formerly, we preserved the original goal as
another alternative and we could decide later which one we wanted to prove. Now we make the
choice as soon as we applyimpL. Similarly, theorRi rules force us to make choices early in the
proof and to drop the other alternative.

Both kinds of rules areirreversible, that is the subgoals are not equivalent to the main goal anymore
but stronger. Applying the rule forces us to prove somethingstronger than the original goal and
that may get us stuck. At that point we need to backtrack to theapplication ofimpL or theorRi
and proceed in a different fashion. This makes searching fora proof much more difficult.3

12.4.1 What kind of logic do we get if drop themagic rule?

The original idea of the sequent calculus is to show that we can construct a proof for a goalG from
a given set of hypothesesH. If G is a single conclusion, then the whole construction has to focus
on that goal and the proof rules tell us exactly how to construct evidencefor the truth ofG.

TheandR rule, for instance tells us: “to proveA ∧B you have to prove bothA andB” – evidence
for A and evidence forB together is sufficient evidence forA ∧B. TheorRi rules forA ∨B require
us to make a choice betweenA andB. If we find evidence for either of them, we have sufficient
evidence forA ∨B. impR is similar: if we show how to build evidence forB from evidence forA
then we certainly have enough evidence for the implicationA⊃B.

3In fact, refinement logic without themagic rule is co-PSPACE complete, which is considered a much more
difficult problem than the co-NP complete validity problem of classical propositional logic.

9

We also could view the goalG as ataskthat needs to be fulfilled and the rules tell us how to solve
that task. “to solveA ∧B you must solve bothA andB”, etc. A third view looks atG as anevent
that happens, assuming that the events in the listH have occurred.

All these views are very much influenced by a computer scientists view of logic. Formulas are not
just truths, but tied to constructions. And it is the construction that interests us.

Refinement logic without the magic rule is highly constructive. It doesn’t just tell us that something
is true but gives us the precise reasons why. It shows us how toconstruct a solution. In fact, our
Nuprl proof system, which uses this refinement logic, is capable ofextracting this construction
from a proof as executable algorithm.

Although refinement logic withoutmagic is not complete with respect to propositional logic as
defined in Smullyan’s book (so-calledclassicallogic), it represents a very well known logic, called
constructive, intuitionistic, orcomputationallogic, which is relevant for reasoning about programs.

The magic rule destroys constructivity, computability, and often even an intuitive understanding,
because it states that one of two alternatives,P or notP , must be true. We don’t know which of
the two, but we are assured that there is no third alternative, so one must be the case. Using this
postulate makes it very easy to prove certain statements since one doesn’t have to worry how to
provide the necessary evidence. But for a computer scientist, this postulate is very unsatisfactory.

Let me give you one example of a proof that uses this law in a very questionable, but absolutely
correct way:

We want to prove that there are two irrational numbersx andy such thatxy is rational.

Considera =
√

2
√

2

. Thena is either rational or not. In the first case choosex = y =
√

2, in
the other choosex = a andy =

√
2.

That completes the proof but we still don’t know whatx andy are. We have been given two
alternatives and told that one of the two is our solution.

This indicates that using the law of excluded middle often goes against our intuition because it
gives a very abstract view of truth that is not required to provide any specific information about the
choices that have to be made.

12.5 Decidability

Refinement logic is not only a complete and correct method forconstructing proofs but also helps
us decidewhether a formula is true or false. In fact, for any sequentH⊢G it is possible to de-
cide whether it isvalid (i.e.the corresponding implication is a tautology) or can be falsified by an
assignment of values to its variables.

Theorem 12.6 (Decidability of Refinement Logic)
∀S:SEQUENT. valid(S) ∨ ∃v

0
:VarS→B. SValue(S,v

0
)=f

James Caldwell has given a formal and constructive proof of this theorem in his PhD thesis. The
proof implicitly constructs a tableau that either proves the validity of the sequent or provides a
counterexample for it. Since we can convert a tableau into a Gentzen proof and that one into
Refinement Logic, we know that Refinement Logic is decidable.

10

