Applied Logic Lecture 12: Properties of Refinement Logig
CS 4860 Spring 2009 Thursday, February 26, 2009

On Tuesday | introduced Refinement Logic as single-conmhesi Gentzen System with two extra
rules,magic andcut. | gave a few examples for using thegic rule but it turned out that this
rule isn't easy to handle and the resulting proofs are oocatly a bit complicated.

Today we want to investigate the properties of Refinementd.dthere are five questions that we
need to look at.

Is it consistent?

Is it complete?

Can a proof search get wedged?

What kind of logic do we get if drop thegic rule?

Is it decidable?

To answer the first two questions we will compare Refinemegid ¢wvith magic) to the multi-
conclusioned sequent Gentzen system, which we already km®& consistent and complete -

because it is isomorphic to block tableaux and that blocketabproofs can be converted into
ordinary tableau proofs and vice versa. We will proceed iagtsteps.

1. Refinement Logic witkcut can be mapped onto a Refinement Logic withowt. This cut
elimination theorenmakes it much easier to prove consistency.

2. Refinement Logic witmagic and cut can be mapped onto the multi-conclusioned sequent
calculus. That gives usorrectnessandconsistency

3. The multi-conclusioned sequent calculus can be mapped®iinement Logic witlhagic and
cut. That gives ugompleteness

akrwbdpE

12.1 The cut elimination theorem

We start with the cut elimination theorem, which will helpping consistency. The cut rule

HEFG cut A
HEF A
H, A -G

is very useful for structuring a proof. One introduces a f&obdr a lemma. This fact will be proven
separately and the be used as assumption in the rest of the frois technique is particularly
useful if an uses the lemma several times in a proof. Butdtla¢dps keep the proof comprehensible
by cutting it into smaller pieces.

It is easy to explain why this rule must be correct but its dvsatage is that it cannot be used
in automated proofs. All other rules (except fiaigic of course) depend on the outer structure
of a formula on the left or right of the turnstyle. The cut rut®wever, can be applieghytime
and withany formula. Nobody has found a way of automating this properfinding lemmata
automatically is still a very difficult task.

1Because of the amount of detail | will use slides for this imssl.

So the question was — do we actuallgedthe cut rule? Do we lose anything if we drop this rule?
Can we prove more formulas if we use cuts than if we don’'t? N@cannot because the cut rule
is not really necessary — one can prove the same theoremsutvith

Theorem 12.1 (Cut elimination) Any formula provable in the single-conclusioned sequeht ca
culus with cut has a single-conclusioned sequent proofdbas not use the cut rule.

While this theorem is plausible, a precise proof of this tkevis quite tricky. If you're interested
you can look up Smullyan’s proof on pages 110-115, but | gaally recommend this because it
isverydense.

Q: | Why should one believe that we can do without the cut rule?

Essentially, it is becausge have to prove the formula that we yse we caruse the full proof of
A wheneverA is used.This is the central idea of the proof of the cut eliminatioadrem. But a
precise proof that uses this idea is difficult to formulatd ane has to look at many details. Let
me illustrate why.

Assume we have used the cut rule to prove a gbahd letp / be the sequent proof for the fadt
Now let us look at the proof fof/, A + G. If A were to remain untouched during that proof and
we would use it just at the end ineaiomrule 4, A, H' + A then we could simply replace this
rule application by the progff.

But imagine if A has the formP A () and A is decomposed somewhere in the prbeforebeing
used. Then we would have to deal with goals of the forin, P, H' = P. Now we have to
analyze the proopf for A. If it used the ruleandR to decompose! into P and (), we could
simply take the proof up to that point, drop thedR rule and the proof part fof) and insert the
rest as proof forP” instead of applying thexiom rule. But if andR was not used to prove,
then H must have contained a superformula/gfwhich at some point was decomposed into an
occurrence ofd on the left hand side. In this case we could take this proginfrent, decompose
A further into P and() and insert this whole proof before applying theiom rule.

Now one has to take into account all the other connectivesumittion, implication, negation and
do the same. And to be precise, you has to provide an indystoe becausel may be a nested
formula that is decomposed into very small pieces. All tleidéstus how toeliminate a single
application of the cut rulérom a proof. Now one proceeds inductively and eliminatéthal cuts
from bottom to top — assuming that after elimination the riexng proof branch is cut-free.

Of course, after this complex proof of the cut eliminatioadhrem is complete, one tries to make
it more elegant and the result of these considerations i$ ydghasee in Smullyan’s book. It is not
an easy proof but the fundamental ideas are not so complicate

Actually, the argument becomes much easier if one takegre&lconstruction into account.
HE-G ev=(fun a — b[a]) (pf) cut A
HHEA ev=pf
H, a:AF G ev=g[d

If « is a label forA and¢|«| the evidence for~ in the second subgoal and the evidence for
A in the first then constructing the evidence ferin the main sequent simply means applying
the function that constructs«| from « to the actual evidence/ for A. Eliminating the cut rule
corresponds to simply evaluating that function, that i€waalting the evidence that results from

2

replacing every occurrence ofin ¢/a| by p/ and continuing the computation until the evidence
term cannot be reduced further. Converting the final eviddrack into a proof gives us the result
of cut elimination?

There is also a cost to eliminating cuts. Our proofs will grémfact they can grow more than su-
perexponentially — in some cases the size reduction aahvmtroducing cuts is non-elementary.
This of course holds only for pathological cases, but onellshime aware of this nevertheless.

12.2 Consistency

To prove this consistency, we have to show how to convert afpnaefinement logic into a proof
in a Gentzen system. In fact, we will show that every Refindrhegic rule can be expressed by
a proof fragment in Gentzen'’s calculus.

If you start with a single conclusion, then all the right suexcept folorR1 andorR2 are the same
in both calculi. TheandL, orL, andaxiom rule are identical as well.

The refinement logic rulesrR1, orR2, impL, andnotL are subsumed by the corresponding
Gentzen rules, which do exactly the same except for theiatthey keep more than one conclu-
sion. So any RL proof that uses these rules without can odythé simulated by a proof that uses
the corresponding rules and keeps the extra conclusiongs@neithout ever using them. Thet
rule can be eliminated anthgic rule can be simulated as follows:

HFG by cut A v ~A
[1] HE A v ~A by orR
HE A, ~A by notR
H, AF A by axiom
[2] H, Av ~A FG

What aboutfalseL? This rule is actuallylerivableif one has the cut rule, sindeis the same as a
contradiction likeA A ~A. The following proof fragment shows how to express theseL rule
in refinement logic withnagic andcut.

f-G by magic G
f, Gv~G F G by orL 2
[1] f, GF G by axiom
2] f, ~GF G by cut ~~G
[2.1] f, ~G F ~~G by notR
f, ~G, ~GF f by axiom
[2.2] f, ~G, ~~G F G by notL 3
f, ~G F ~G by axiom

Thus we know how to simulate all the rules of refinement logithie multi-conclusioned calculus
and get the following theorem.

Theorem 12.2 Refinement Logic is consistent

2Obviously the details are equally complex because we negefiloe evaluation of evidence terms. But for this we
can rely on the operational semantics of functional prognarg languages lik&IL. Note, however, that the resulting
term can grow superexponentially depending on how ofteifetinenas are actually used.

12.3 Completeness

Finally, let us show completeness. Can we really do evergtim refinement logic that we could
do in multi-conclusioned sequent systems?

Theorem 12.3 Any formula provable by Gentzen systems can be proved imigle-sonclusioned
sequent calculus with magic and cut.

This seems plausible, but how do we prove it? Assuming thagteut with a single conclusion —
can we simulate the multi-conclusioned rules by singlect@ioned ones?

Look at the rules and compare thent, AR, vL, DR, ~R, andaxiom are really the same. But the
other rules,vR, DL, and~L, createan additional conclusion, see can’t simulate them directly.

So we have to do something different. If we cannot expressuies directly, we have tmimic a
multi-conclusioned prootvith just one conclusion. Look at the meaning of multiple dasions.
We have said that/ - GG should be understood as: “under the assumption that albtineuias in
H are true we can show that one of the formula&’irs true”. So ifG is G4,, G,, then

proving H + G is the same as proving - G, vGs...vG,

We will use this idea to simulate multi-conclusioned proofsefinement logic. That is, we will
express every multi-succedent rule that operate¢/anG:,, Gs..., G,, by a series of refinement
logic rules that operate o + GG; vG,... vG,,. Let me introduce an abbreviation:

For a list of formulas = G4, Gs..., G,, we defing="* to be the formula; v (Go v (... vG,)).

| put the parentheses around the disjunctions to avoid auildg. If | omit parentheses, | mean
exactly this way of parenthesizing. With this abbreviatiascan state our simulation theorem.

Theorem 12.4 LetH = H,, ..., H,, andG = G4, ..., G, be lists of formulas. If{ - G is provable
in the multi-conclusioned sequent calculus, tiiéR G* is provable in refinement logic.

Q: | Why is this enough[?

An initial sequent has exactly one conclusion, and the #radells us that iff - G, is provable
in the multi-conclusioned sequent calculus then it is alewable in refinement logic.

Note that | said “lists of formulas” and not “sets”. Althougtulti-succedent rules operate on sets,
we can always assume that we have a standard way of listirejeheents of these sets so that we
know howG* is related taz = G1, Gs..., GG,,. | need this only for proof purposes — | don’t change
the calculus.

Proof: We will proceed by induction over the depth of the multi-clustoned sequent proof and
show how to simulate each proof step in refinement logic.

| will sketch each case and leave the details as an exercibe teader.

4

Base Case:lf the depth of the proof fofd - G is 1 then the proof must be the application of the
axiom rule to some&7;, which also occurs il asH;.

Hl; Gz - HJ, Hm l_ G17 GQ, ey G,L', . Gn
We can essentialy do the same in refinement logic by usingitbexiom j. But we must keep

in mind that the multi-conclusioned sequent rules can dpeyaany element of(z, while we
need to prove

Hl, Gz — HJ, Hm l_ Gl \/(GQ \/((Gl\/ \/Gn)))

that is we have a goal formula with a fixed structure. So, ttatse@;, we must move it to the
left of the disjunction. We need four derived proof rulestlus purpose.

H F Av(BvC) by orAssocL H - (AvB)vC by orAssocR
H + (AvB)vC H - Av(BvC)

H F AvVB by orCommut H F (AvB) vC by orCommutL
H - BvA H = (BvA)vC

These rules can be derived in Refinement Logic. For instaveean represent the rudeCommut
by the following proof fragment, which tells us how to writpeogram {actic) that applies proof
rules in a way that we get the same effect as applyir@pmmut.

H - AvB by cut BvA
1. H F BvA
2. H, BvA - AvB by orL m+1
2.1. H, A+ AvB by orR1
2.1.1. H, AL A by axiom m +1
2.2. H, BF AvB by orR2
2.2.1. H, BB by axiom m +1

So we can write a tactic that performs all these steps and weassidebrCommut as a derived
inference rule.

By applying the four rules we can transform
Hy,..G;=H;.. H,FGy,Gs, .., G, ., G,
into Hy,..G;=H;... H, -G v(Giv(Gav(.(Gizrv(Gitlv..vGy)))))
and then proceed by applyinrgR1 to get
H,,..G;=H;.. H,FG,
and now we can applyxiom jto complete the proof.

Let me show you how this works when you want to isol@teout of G; v (G5 v G3).

H + Giv(GavGs) by orAssocL
1. H + (GivGsy)vGs by orCommutL
1.1. HF (GavGy)vGs by orAssocR
1.1.1. H F Gov(GyvGs) by orAssocR

In fact, it is possible to write tactics that implement thédaing two derived rules

HF G* by SwapOut ¢ H - G;v Gf by Swapln ¢
HF Giv G} HF G*

Induction case: Assume that for alF,G, and all multi-conclusioned sequent proofs fér- G
of depthn we find a refinement logic proof fol + G*. We show how to convert a multi-
conclusioned sequent proof of depth-1 into a refinement logic proof by looking at thiest
proof rule that was applied.

AL:

AR:

If the first step in the deduction was
Hl,.Hj:A/\B..,Hm F G by AL
Hy, Hj=A,B..,H, - G
then we can simulate this step by
Hy, Hj =AAB..,H, = G* by andL j
Hy, Hj=A,B..,H, + G*
By the induction assumption we can find a refinement prooftiar $ubgoal because the
multi-conclusioned sequent proof féf,, .H; = A, B.., H,, - G has deptm.
If the first step in the deduction was
H+ Gy,..Gi—1, AnB, Gi+l,..G, by AR
H&F Gy,..Gi—1, A, Gi+1,..G,
HvF Gy,..Gi—1, B, Gi+1,..G,
We need to show that we can express the following rule in neferg logic:
HFEF G v..Gi-iv AnB v Gigiv .. vGy
HF Gv..Gioyv A v Giyiv ..vGy,
H + Gl\/..Gifl\/ B v G/L'Jrl\/ ..\/Gn

By the induction assumption we can find a refinement prooffer'subgoals” because the
corresponding multi-succedent proofs have depth
It is sufficient to describe the following derived rule:

H&EF ANB v G} andR*
HEAV G
HFB v Gy

because if we applgwapOut ¢ before this rule an@wapIn i afterwards, we have exactly
the rule we want to have.

In the rest of this proof we won’t bother with this distinatianymore but always assume
that we operate on the first formula Gf.

So how do we implemerindR*? We first cut in the desired subgoals v G} andB v
G and then show that they are sufficient to proveB v G}

HF AnB v G by cut (A v G)) A~ (B v G))

1. HE A v G)) ~ (B v G by andR

1.1. HF A v G}

1.2. HF B v G}

2. H, (Av G)H) n (Bv G)FAAB v G by andL

2.1. H, Av G;, Bv G - ArB v G} by orL 1
2.1.1. H, A, Bv G F AxB v G} by orL 2
2.1.1.1. H, A, B+ A\B v G} by orRi
2.1.1.1.1. H, A, B+ ArB by andR
2.1.1.1.1.1. H, A, B+ A by axiom m+1
2.1.1.1.1.2. H, A, B+ B by axiom m+2

vL:

DL:

DR:

2.1.1.2. H, A, Gi - AxB v G}
2.1.1.2.1. H, A, Gf + G}

2.1.2. H, Gf, Bv Gi - A\B v G}
2.1.2.1 H, G¥, B v G + G*

So we have found an “implementation” efidR*

can be simulated directly as in the casexndL

by orR2
by axiom m+2

by orR2
by axiom m+1

Assuming that we operate on the first formula of the set thediep was

H+ AvB, G by VR
HFA, B, G

We need to show that we can express the following rule in neferg logic:

H+F AvB v G* Dby orR*
HEF Av(B v G

which is exactly the same agAssocR

If the first step in the deduction has been
Hl,.Hj =ADB..,.H, H G by DL
Hy,.H; =ADB..,H,, A,G
Hy, .H; =B..H,, F G
Then we can simulate this first step by
Hy, H; =ADB..,H,, - G by impL*
Hy, .Hj =ADB..,.H,, F AvG
Hy,.H; =B..H, F G
To implementimpL* we proceed as before
Hl,.Hj =ADB...H, F G

1. Hl,.Hj :ADB..,Hm F (AvG) A (BDG)
1.1. Hy,.H; =A>B...Hy,, F AvG

1.2. Hl,.Hj =ADB..,.H,, - BOG

1.2.1 Hl,.Hj =ADB..,.H,,,B F G

2. Hl,.Hj =ADB...H,,, (AvG) A (BDG) F G
2.1. Hl,.Hj :ADB..,Hm, A\/G, B>G F G
2.1.1. Hl,.Hj :ADB..,Hm, A, B>G F G
2.1.1.1. Hl,.Hj =ADB...H,,, A, BDOG F A
2.1.1.2. Hl,.Hj =B...H,, A, BOG F G
2.1.1.2.1. Hl,.Hj =B...H,, A, B>G + B
2.1.1.2.2. Hl,.Hj =B..,.H,, A, G F G

2

.1.2. Hl,.Hj =ADB..,.H,, G, BDG F G

If the first step in the deduction has been

HF ADB, G by DR
H, A+ B, G

by cut (AvG) A (BDG)
by andR

by impR

by andL m+1
by orL m+1
by impL j

by axiom m+1
by impL m+2
by axiom j
by axiom j

by axiom m+1

then we need to show that we can express the following rulefinement logic:

H+ ADB v G* impR*
H, A B v G*

| leave this as exercise.

~L: If the first step in the deduction has been
Hy, H; =~A..,H, G by ~L
Hy, Hj=~A..H, + A,G
then we can simulate this first step by
Hy, Hj =~A..,H, = G by notL”
Hy, Hj = ~A.,H, - AvG
Since~A can be viewed as abbreviation fdDf this works precisely asmpL*
~R: If the first step in the deduction has been
HFEF~A, G by ~R
H, A+ G
then we need to show that we can express the following rulefinement logic:
HEF ~A v G notR*
H, A +FG*
Since~A can be viewed as abbreviation fdDf this works precisely asmpR*

So in all cases we have shown how to simulate multi-succemtenfs using refinement logic. We
need themnagic rule only for implication and negation on the right, so we séere it is actually
needed to achieve completeness. So as a result we get:

Theorem 12.5 The Refinement Logic calculus is complete

| have presented the inductive proof in a rule-fashion bgedlis enables us to write an algorithm
that converts multi-succedent proofs into refinement Ipganfs. Because of the rul€sapOut
andSwapIn this proof will in the end be much bigger than the original tasliccedent proof. It
gets even worse if we try to eliminate the cuts as well.

But there is no way out. Although refinement logic proofs arfigent to prove that a formula
is a tautology, they cannot be as short as multi-succedentsr In the worst case, they must be
exponentially longer. For those of you who are interestedg s an example:

Forn > 0 consider the propositional formula claks

F, = Ay a N2 (BioiD(BivA)vB;) a (ByvAg)vBy) D Ay v VIT) BinAi
N,
0; Og i

Now if you look at the properties of these formulas you find out

Fy needs one leaf in Gentzen Systems and Refinement Logic

there exist a Gentzen proof 6§, with 6n — 2 leaves (branches)

F,, implies a reduction ordering@); — O;;; — N, on Refinement Logic proofs

each (cut free) Refinement Logic proof Bf requires at least(2" — 1) leaves

This result, however, describes a pathological case. Iatbeage the translation gets much better
results.

12.4 Can a proof search get wedged?

The example proof of Pierce’s law that we discussed on Tyeselams to indicate that. Justimag-
ine we had used a strategy that first tries to decompose tlilal@eaformulas before attempting
magic. This was a reasonable strategy for the tableau method a@kefazen Systems. We could
prove it to terminate. But when we apply it to Pierce’s laws ptoof gets stuck at the same goal
where the calculus withoutagic got stuck.
= ((PDQ)DQ) DP by impR
(POQ)DP F P by impL
[1] (POQ)DP F PDQ by impR
(POQ)DP, P F Q by 777
[2] PHP by axiom

No application of the magic rule will help us anymore. Oncehaee appliedmpL we are required
to proveQ and a case analysis will not help us to do that.

We get a similar problem with the following two proof atterspor the law of excluded middle.

F Pv~P by vR1 F Pv~P by VR2
FP v F ~P v

Q: | What is the reason? Why do proofs in refinement logic get %Iluck

The reason is that as soon as we applyithel. or theorRi rules, we have lost information that
we had before. ApplyindmpL drops the conclusion that we had before and we are left with a
completely different conclusion in the first subgoal. Foriyyeve preserved the original goal as
another alternative and we could decide later which one weeudato prove. Now we make the
choice as soon as we applyipL. Similarly, theorR: rules force us to make choices early in the
proof and to drop the other alternative.

Both kinds of rules arereversiblg that is the subgoals are not equivalent to the main goal argm
but stronger. Applying the rule forces us to prove sometisimgnger than the original goal and
that may get us stuck. At that point we need to backtrack tapgmication ofimpL or theorR:
and proceed in a different fashion. This makes searching fooof much more difficult.

12.4.1 What kind of logic do we get if drop themagic rule?

The original idea of the sequent calculus is to show that wecoastruct a proof for a goél from
a given set of hypothesé$. If GG is a single conclusion, then the whole construction hasdado
on that goal and the proof rules tell us exactly how to corms&uidencdor the truth ofG.

TheandR rule, for instance tells us: “to prové A B you have to prove botl and B” — evidence
for A and evidence foB together is sufficient evidence farn B. TheorRi rules forA v B require

us to make a choice betweehand B. If we find evidence for either of them, we have sufficient
evidence forA v B. impR is similar: if we show how to build evidence fd@# from evidence forA
then we certainly have enough evidence for the implications.

%In fact, refinement logic without theagic rule is co-PSPACE complete, which is considered a much more
difficult problem than the co-NP complete validity problefrctassical propositional logic.

9

We also could view the god} as ataskthat needs to be fulfilled and the rules tell us how to solve
that task. “to solved A B you must solve botll and B”, etc. A third view looks atz as anevent
that happens, assuming that the events in théflieave occurred.

All these views are very much influenced by a computer s@awiew of logic. Formulas are not
just truths, but tied to constructions. And it is the constian that interests us.

Refinement logic without the magic rule is highly construaetilt doesn’t just tell us that something
is true but gives us the precise reasons why. It shows us heertstruct a solution. In fact, our
Nuprl proof system, which uses this refinement logic, is capablextfcting this construction
from a proof as executable algorithm.

Although refinement logic withoutagic is not complete with respect to propositional logic as
defined in Smullyan’s book (so-callethssicallogic), it represents a very well known logic, called
constructiveintuitionistic, orcomputationalogic, which is relevant for reasoning about programs.

The magic rule destroys constructivity, computabilitydaften even an intuitive understanding,
because it states that one of two alternativeé®r not P, must be true. We don’t know which of
the two, but we are assured that there is no third alternattv®ne must be the case. Using this
postulate makes it very easy to prove certain statemente sine doesn’t have to worry how to
provide the necessary evidence. But for a computer scigttis postulate is very unsatisfactory.

Let me give you one example of a proof that uses this law in ¢ gaestionable, but absolutely
correct way:

We want to prove that there are two irrational numberandy such thatz? is rational.

Considers = \/5\/5. Thena is either rational or not. In the first case choase y = v/2, in
the other choose = a andy = /2.

That completes the proof but we still don’t know whaandy are. We have been given two
alternatives and told that one of the two is our solution.

This indicates that using the law of excluded middle ofteegyagainst our intuition because it
gives a very abstract view of truth that is not required tovte any specific information about the
choices that have to be made.

12.5 Decidability

Refinement logic is not only a complete and correct methoddostructing proofs but also helps
us decidewhether a formula is true or false. In fact, for any sequEri it is possible to de-
cide whether it is/alid (i.e.the corresponding implication is a tautology) or carfdisified by an
assignment of values to its variables.

Theorem 12.6 (Decidability of Refinement Logic)
VS:SEQUENT. valid(S) v Jv,Vars—B. SValue(S,v,)=f

James Caldwell has given a formal and constructive prodfisftheorem in his PhD thesis. The
proof implicitly constructs a tableau that either proves Walidity of the sequent or provides a
counterexample for it. Since we can convert a tableau inteeat£en proof and that one into
Refinement Logic, we know that Refinement Logic is decidable.

10

