Applied Logic Lecture 10: Gentzen Systems to Refinement Logic
CS 4860 Spring 2009 Thursday, February 19, 2009

Last Tuesday we have looked into Gentzen systems as an alternative proof calculus, which focuses
on constructing a proof for a given formula rather than trying to refute it and concluding from a
failed refutation that the formula is valid. I went over the individual proof rules and tried to present

a

n intuitive justification for them. To emphasize that Gentzen systems actually provide evidence

for the truth of a formula, I described for each rule a method for constructing the corresponding
evidence, using an ML-like notation for “abstract proof terms” to make this a bit more precise.

There were two small issues that I would like to clarify.

)

2)

If you look into Gentzen’s original paper and Smullyan’s account in chapter 11 of the book you
will find that they write rules in a synthetic style, that is the premises of the rule are written on
top of a horizontal line and the conclusion derived from these premises below. Our account of
logical rules uses an analytic style — or top-down, just as we did for tableau systems. The rules
in the handout first show the main goal and below that the subgoals derived by applying the rule.

Although the meaning is still that the subgoals are premises that imply the main goal (or con-
clusion), this refinement style better reflects the way how proofs are developed. You start with a
formula that you want to prove, apply a rule, get subgoals that remain to be proven, and continue
until there are no more unproven subgoals. Note that evidence is constructed bottom up once
you have completed the proof.

With synthetic rules you would either have to develop a proof from bottom to top — and essen-
tially do the same — or start with the leaves and build you proof, assuming you know exactly
what you need. The synthetic style is only good for writing down proofs once you know them,
but not for developing them.

Top down proof rules are designed for computer-supported, but interactive reasoning — which
is particularly important if we go beyond propositional or even first-order logic, where fully
automated proof methods aren’t strong enough anymore. This is also the reason why Gentzen
systems provide all the information relevant for continuing the proof process locally in a single
sequent while in tableau proofs one has to look at the whole proof tree.

The second is the issue of reversible rules. A rule is reversible, if applying it does not destroy
information, that is if the main goal is equivalent to the conjunction of all the subgoals of the
rule.

You can easily prove that all the rules of Gentzen’s multi-conclusioned sequent calculus are
reversible if you replace the comma on the left hand side by A, on the right hand side by v,
and the turnstyle by D, and consider the unknown the set of formulas as just one big formula.
One of the reasons to allow multiple conclusions is exactly that ... we want the rules to be
reversible. We will see irreversible rules once we begin looking at a logic that doesn’t allow
multiple conclusions. I will go into that either by the end of this lecture or next Tuesday.

10.1 Consistency and completeness of Gentzen Systems

One of the issues that I have touched on already but not yet completed is the question of consistency
and completeness of Gentzen Systems. Given the intuitive explanations it seems clear that the rules
must be correct correct but that is not enough to convince ourselves that we haven’t overlooked a
subtle mistake. Besides, this doesn’t say anything about the completeness of Gentzen Systems.

Q: | What again is the distinction between consistency and completeness?

So we could go on and proceed the same way as we did with tableaux: we extend the notion of
boolean valuations to sequents, define the notions of satisfiability and tautology, and then go on
proving that a sequent is a tautology if and only if there is a sequent proof for it. Given that we just
spent more than an hour to do that for tableau systems this look too appealing — actually it would
be quite boring to repeat all that again for another proof calculus.

There is a much simpler way, because — as I have pointed out several times already — Gentzen
systems and tableau are actually quite similar. When we prove a formula in either system we can
more or less use the same kind and order of rules. When we write the proofs side by side (do
this for ((P ~Q)D>R)DPD>QDR) we also observe that each sequent in the Gentzen proof contains
exactly those formulas of the tableau that have not yet been decomposed ... with the once labelled
F' on the right and the ones labelled 7" on the left of the -. In a sense, Gentzen systems and the
tableau method are dual to each other and therefore we can prove consistency and completeness of
Gentzen systems by providing a translation between Gentzen and tableau proofs, showing that the
two are actually isomorphic.

In order to turn this informal observation into something more precise I have to go back to tableau
systems and formalize the concept of “formulas that have not been decomposed yet”. Smullyan
calls the modification of the original tableau method that handles these formulas explicitly in a
proof node Block Tableaux.

10.2 Block Tableaux

One of the disadvantages of the original tableau method from the perspective of a human user is
that it is difficult to keep track of those formulas in the proof tree that still can be decomposed,
thus generating new signed formulas that may be essential for closing the current branch. One
essentially has to look at the whole path in the proof tree between the root and the current proof
node and determine which of these nodes haven’t been used yet.

For interactive use it would be much better to redesign the calculus in a way that it supports local
reasoning. Essentially this means that we add all the formulas to a proof node that are above it
in the tree but haven’t been decomposed yet and can still be analyzed. So what we essentially do
is to use a tableau calculus that operates on sets of signed formulas instead of a single one and
doesn’t require a user to look anywhere else but at the current proof node. The following example
illustrates the difference

F(((PDQ|) DP)DP)
T((PD|Q) OP)
FP
/ \
F(P>Q) T|P

T|‘P X
F|Q

X

F(((PDQ)DP)DP)

T((PDQ)DP), FP

F(®PoQ), FP

TP, FQ, FP

X

TP, FP

As we can see, the block tableau proof is even shorter because it keeps the two formulas generated
by most a-rules within the formula set of a single successor node. Apart from the the proofs are

essentially the same.

The formal modifications for the block tableau calculus are simple.

(1) The root of a tableau tree is now a finite set of formulas, usually the set consisting of the one

original formula to be refuted.

(2) « and [rules operate on sets with a distinguished formula

S, «

5,0

S?ﬁl

S, ar, o

5752

In these rules, the comma stands for set union, so the o and 3 might be elements of S

(3) A block tableau is closed if each end point contains a formula and its complement and it is
atomically closed if it contains a (signed) variable and its complement.

Smullyan uses two a-rules, one that adds only
«, and the other adds only «, But this is not
really necessary because adding the other a-
successor does not affect whether a branch can
be closed or not.

If we spell out these rules for each logical con-
nective and write the rules in a less graphical
fashion, but simply use one line for each gen-
erated branch, we get the table of rules that I
gave you in the handout. The condition for clos-
ing a tableau can also be formulated as rule that
closes a branch, because it creates no successor.

T F
S, TAAB S, FAAB
S, TA,TB S, 'A
S, F'B
S, TAvB S, FFAvB
S, TA S, FA, B
S, TB
S, TADB S, FADB
S, A S,TA, FB
S,TB
S, T~A S, F~A
S, TA S, FA
S, TA, FA

As the above example demonstrated, a conventional tableau for a single formula an immediately
be converted into a block tableau for that formula. One just collects all the formulas that have been

generated before and not yet been decomposed into a set of formulas for the block tableau. Apart
from that and the fact that a-rules in the block tableau generate only one node where the con-
ventional tableau creates two, the block tableau is a one-to-one simulation of the analytic tableau,
because we apply the same rules to the same nodes. If the convential tableau is closed, so is the
block tableau. If it is open, so is the block tableau. Thus every analytic standard tableau can be
simulated by a block tableau and as a result of that block tableaux are complete

Q: | Why?
because due to completeness of analytic tableau every valid formula has a closed analytic tableau
and hence a closed block tableau.

Let us look at the other direction and show that every block tableau can be simulated by an analytic
standard tableau. Let us look at another example

FPAQ D @QvP)) FPAQ D @QvP))
T(P/\Q),|F(QVP) T(P|/\Q)
TP, TQ,|F(Q vP) F(Q|\/P)
TP, TQ,| FQ, FP T|P
. o
’»
i
.

Again we use the same rules at the same nodes in both tableau and notice that -rules in analytic stan-
dard create two successors instead of the one generated in the block tableau. Thus block tableaux
are consistent since every formula that has a closed block tableau also has a closed analytic tableau
and thus, by consistency of analytic tableau, is valid.

Thus we have shown that the block tableau calculus is consistent and complete and thus provided
a foundation for proving Gentzen systems consistent and complete.

10.3 Gentzen systemsare essentially block tableaux

Let us come back to the abovementioned similarity between Gentzen systems and tableaux.

We know that a sequent pretty much expresses the same as the formula

. In order to prove this formula, the tableau method would begin de-

composing F’ by using the a-rule for D, which yields 7 and
F . After applying the a-rules for A and v we would eventually get the set of signed
formulas {7' T F F . In a block tableau, this set would be a single proof node,

since none of the X; and Y); have been decomposed yet.

Now if we convert every formula X in the hypotheses of the initial sequent into 7'X and every
formula Y in the conclusion into /'Y and drop the turnstyle

4

Q: | What do we get?

we get exactly the same set of signed formulas. And if we move every 7'-formula in that set to the
hypotheses and every F'-formula to the conclusion we get back the original sequent.

Now let us take a closer look at the proof rules in the handout.

Q: | What happens if we apply the same technique to the sequent rules?
If we put H and G together into one set S we get exactly the same rules as in the block tableau
calculus. And if we do it the other way around and split the set S into formulas marked with 7" and
F' then each block tableau rule becomes exactly the Gentzen rule described in the table.

Thus Gentzen Systems, although totally different in spirit, are actually isomorphic to block tableau.
Technically the difference between the two is just a simple syntax transformation.

(1) We have the same starting point: corresponds to F'X.

(2) We have exactly the same rules

(3) We have exactly the same nodes in our proof trees. Every sequent corresponds to a finite set of
signed formulas. Conversely every set S of signed formulae corresponds to the sequent H + G,
where H ={X |7XeS}and G ={X | FXeS}

(4) We have exactly the same condition for closing a proof branch: the axiom rule corresponds to
the *-rule for closing block tableaux.

As an immediate consequence of this result we get

Let me conclude by a few remarks about the semantical differences between tableaux and Gentzen
systems. Although these two methods are formally almost identical, they have different intentions.

Tableau Sequent

Goal FX: search for counterexample FX: try to prove X

o-step counterexample must involve both o, and «, | proof must show either o, or «a,
(AND branch) (OR-branch)

(B-step counterexample uses either (3, or [, | proof must show both 3, and g,
(OR-branch) (AND branch)

closed branch | counterexample impossible partial proof sucessful

open leaf consistent valuation possible (counterexam- | proof fails at this leaf
ple found)
implicit proof of validity —no counterexample | explicit justification of validity
negative / indirect approach positive / constructive proof

But the technical similarity shows us that the indirect proof can be converted into a direct one.
Actually, there are even methods which start way in the very compact matrix proofs and end up in
the refinement logic that we will discuss next Tuesday.

