
Applied Logic Lecture 3: Proving Satisfiability & Validity
CS 4860 Spring 2009 Tuesday, January 27, 2009

The main purpose of these notes is to help me organize the material that I used to teach today’s lecture. They often contain text
fragments, lots of typos, hints to myself, and imaginary questions and are often written in a style as if I were talking to someone
else. They are by no means intended to be text book quality.

3.1 Review

Last week Mark Bickford introduced formulas, valuations, validity, and satisfiability. Satisfiability
and validity are the key notions because there are many applications from mathematics, physiscs
and computer science that can be formulated as satisfiability problem or as validity problem. Mark
gave you one example about finding triangles in graphs. A moregeneral question is finding cliques,
that is a group of totally connected nodes in a graph (or a network). Once the network gets too big,
you need a computerized satisfiability solver to answer thisquestion because you cannot solve it
by hand anymore. I believe Mark showed you that these SAT solvers have become very efficient.

Validity is equally important. If you want to guarantee thata program has a given property, then
this is essentially a validity problem - for all possible values of the input variables, the output
must have that property. Proving this with a computer is called program verification and this
is particularly important when we’re dealing with safety and security issues, like controlling an
airplane or encrypting messages to protect them from being read by unauthorized people.

I spent quite a bit of time just talking about this

Today we want to take a deeper look at satisfiability and validity, and at procedures that can be
used to solve problems.

3.2 The truth table method

The simplest – but probably not the most efficient – way to check whether a formulaX is valid or
satisfiably, is building a truth table. That is, we have to compute the value ofX for all possible
interpretations of the formula’s variables. To do this systematically, we build a table where we
write down all possible combinations of valuest andf for the variables of the formula and then
compute the value for all subformulasY of X, includingX itself.

You have seen an example of that method last week and I’d like to review this method by consid-
ering another small example formula(P ⇒ Q) ⇒ (¬Q ⇒ ¬P).

P Q P ⇒ Q ¬Q ¬P ¬Q ⇒ ¬P (P ⇒ Q) ⇒ (¬Q ⇒ ¬P)
t t t f f t t

t f f f t t t

f t t t f f t

f f t t t t t

The formula is a tautology because every row ends witht. If only a single row would result inf, it
would not be a tautology anymore. However, it could still besatisfiable.

1



The truth table method is simple, but has one severe drawback. The tables grow incredibly fast
even for relatively small formulas. The number of rows growsexponentially in the number of
variablesand additionally the number of columns is linear in the number of subformulas, which is
roughly the number of connectives plus the number of variables. The example of the formula
(P ∨ (Q ∧ R)) ⇒ ((P ∨Q) ∧ (P ∨R)) shows how quickly a truth table may grow.

P Q R Q ∧R P ∨(Q ∧R) P ∨Q P ∨R (P ∨Q) ∧(P ∨R) (P ∨(Q ∧R))⇒ ((P ∨Q) ∧(P ∨R))

t t t t t t t t t

t t f f t t t t t

t f t f t t t t t

t f f f t t t t t

f t t t t t t t t

f t f f f t f f t

f f t f f f t f t

f f f f f f f f t

Truth tables were based on the definition thata formula is a tautology if it is true under every
interpretation. However, using truth tables for evaluating the truth of a formula quickly becomes
infeasible. For larger formulas, we should therefore look for a better method – something that is
fairly schematic, but doesn’t rely checking individual valuations anymore.

Before we go into that I would like to investigate a few theoretical issues

3.3 How many truth tables are there?

22
n

- way to many to store them for table lookup

example n=2 - write down all 4 options, then assign truth values systematically to get 16 entries,
identify them by name. I went through half of them, asking them to identify the rest

Sheffer StrokeX|Y is true iff one ofX andY is false.

3.4 How many boolean operations do we need?

We have identified 16 different boolean operations on 2 variables, there will be 256 on 3 variables
and even more on 4, 5 etc. It will obviously be impossible to check the satisfiability of a formula
with hundreds of different operations. So how many do we actually need?

We call a boolean operationop definablefrom op1, ..opk if it can be expessed in terms ofop1, ..opk,
that is ifop(X1, ..Xn) is functionally equivalent to a formula that only usesop1, ..opk.

When we look at truth tables it becomes obvious that all n-aryboolean operations can be expressed
by ¬, ∨ , and ∧ .

Example implicationp⇒ q≡¬p ∨q

Show everythis is definable viaxor – what do we have to do? I forgot to do this

Homework: all via Sheffer Stroke

2



3.5 Generating Normal forms

TT yields DNF (complexity?): Build whole table - space is2n rows,n+1 entries

Conversion via De Morgan?: provide 3 laws to move¬ inside and∨ to the outside

Conversion to CNF is exponential in the wost case

SAT is easy with DNF (make one of the rows true, find the valuation from the clause)

SAT procedures usually do NOT start with DNF but often with CNF (a Matrix, usually shorter).
That makes it difficult, because we can’t look at just a singleclause anymore. While it is true,
taht the formula is unsatisfiable, if one clause is this is notthe real issue. You will hardly have a
problem formulation where a single clause is already unsat (when would that be the case??). It is
the interaction between the clauses that makes it difficult.We have to find a valuation that makes
all clauses true. If for each valuation one of these CNF clauses evaluates to false, then the formula
is unsatisfiable.

3.6 Why can we often find efficient solutions anyway?

3.7 Davis Putnam

The DPLL/Davis-Putnam-Logemann-Loveland algorithm is a complete, backtracking-based algo-
rithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e.
for solving the CNF-SAT problem.

It was introduced in 1962 by Martin Davis, Hilary Putnam, George Logemann and Donald W.
Loveland, and is a refinement of the earlier Davis-Putnam algorithm, which is a resolution-based
procedure developed by Davis and Putnam in 1960. Especiallyin older publications, the Davis-
Logemann-Loveland algorithm is often referred to as the Davis-Putnam method or the DP algo-
rithm. Other common names that maintain the distinction areDLL and DPLL.

DPLL is a highly efficient procedure, and after more than 40 years still forms the basis for most
efficient complete SAT solvers, as well as for many theorem provers for fragments of first-order
logic.

The basic backtracking algorithm runs by choosing a literal, assigning a truth value to it, simplify-
ing the formula and then recursively checking if the simplified formula is satisfiable; if this is the
case, the original formula is satisfiable; otherwise, the same recursive check is done assuming the
opposite truth value. This is known as the splitting rule, asit splits the problem into two simpler
sub-problems. The simplification step essentially removesall clauses which become true under the
assignment from the formula, and all literals that become false from the remaining clauses.

Example:C1 ∧C2 ∧C3 ... (make one up with 4 variablesp, q, r, s)

• if X is empty return satisfiable (why?: no requirements to satisfy)

• if X contains an empty clause then return unsatisfiable

• Simplify using the techniques below

3



• Setp to be true (split)

• Drop every clause containingp (why?:Ci evals to true, we don’t need it anymore)

• Drop every¬p from the remaining clauses (why?: ifCj evals to true, then it doesn’t have to
do with¬p, which is false)

• The formula doesn’t containp anymore

Repeat splitting the remaining variables in the remaining formulaX ′

If the result is that formulaX is unsatisfiable setp to be false and do the same

The DPLL algorithm enhances over the backtracking algorithm by the eager use of the following
rules at each step:

Unit propagation If a clause is a unit clause, i.e. it contains only a single unassigned literal, this
clause can only be satisfied by assigning the necessary valueto make this literal true. Thus,
no choi ce is necessary. In practice, this often leads to deterministic cascades of units, thus
avoiding a large part of the naive search space.

DropCj = q and every clause containingq then drop every¬p from the remaining clauses

Pure literal elimination : If a propositional variable occurs with only one polarity in the for-
mula, it is called pure. Pure literals can always be assignedin a way that makes all clauses
containing them true. Thus, these clauses do not constrain the search anymore and can be
deleted. While this optimization is part of the original DPLL algorithm, most current imple-
mentations omit it, as the effect for efficient implementations now is negligible or, due to the
overhead for detecting purity, even negative.

Drop all clauses containing pure literals.

Both improvements are obvious, when one looks at the DPLL procedure from the perspective:
what can I do before I split? Both look at situations where thesplitting rule runs into a special case
where we don’t need to backtrack. Unit propagation means theliteral in the clause MUST be made
true (we don’t have a choice) , pure literal elimination means we have a literal that SHOULD be
made true because making it false will not contribute to the solution.

Unsatisfiability of a given partial assignment is detected if one clause becomes empty, i.e. if all its
variables have been assigned in a way that makes the corresponding literals false. Satisfiability of
the formula is detected either when all variables are assigned without generating the empty clause,
or, in modern implementations, if all clauses are satisfied.Unsatisfiability of the complete formula
can only be detected after exhaustive search.

4


