Applied Logic Lecture 3: Proving Satisfiability & Validity
CS 4860 Spring 2009 Tuesday, January 27, 200

The main purpose of these notes is to help me organize the material that | used to teach today’s lecture. They often contain text
fragments, lots of typos, hints to myself, and imaginary questions and are often written in a style as if | were talking to someone
else. They are by no means intended to be text book quality.

3.1 Review

Last week Mark Bickford introduced formulas, valuationaljdity, and satisfiability. Satisfiability
and validity are the key notions because there are manycapipins from mathematics, physiscs
and computer science that can be formulated as satisfygiitiblem or as validity problem. Mark
gave you one example about finding triangles in graphs. A meneral question is finding cliques,
that is a group of totally connected nodes in a graph (or aordwOnce the network gets too big,
you need a computerized satisfiability solver to answerdhisstion because you cannot solve it
by hand anymore. | believe Mark showed you that these SATeselvave become very efficient.

Validity is equally important. If you want to guarantee tlagprogram has a given property, then
this is essentially a validity problem - for all possible wa$ of the input variables, the output
must have that property. Proving this with a computer isecalprogram verification and this
is particularly important when we'’re dealing with safetydasecurity issues, like controlling an
airplane or encrypting messages to protect them from beiad by unauthorized people.

| spent quite a bit of time just talking about this

Today we want to take a deeper look at satisfiability and ugjidnd at procedures that can be
used to solve problems.

3.2 The truth table method

The simplest — but probably not the most efficient — way to kiveleether a formul& is valid or
satisfiably, is building a truth table. That is, we have to poie the value ok for all possible
interpretations of the formula’s variables. To do this eysatically, we build a table where we
write down all possible combinations of valuesindf for the variables of the formula and then
compute the value for all subformul#@of X, includingX itself.

You have seen an example of that method last week and I'ddikeview this method by consid-
ering another small example formuwla = Q) = (—-Q = —P).

P|Q|[P = Q|-Q|—-P|—Q = —P|| (P = Q) = (=Q = —P)
tit] t flf t t
t|f|| f flt t t
flt]| t t | f f t
flf] t t|t t t

The formula is a tautology because every row ends withonly a single row would result it, it
would not be a tautology anymore. However, it could stilag¢isfiable

1

The truth table method is simple, but has one severe drawbEo tables grow incredibly fast
even for relatively small formulas. The number of rows grawgonentially in the number of
variablesand additionally the number of columns is linear in the nundfesubformulas, which is
roughly the number of connectives plus the number of vagmblhe example of the formula

(P v (@ A R) = ((PvQ) A (PvR)) shows how quickly a truth table may grow.

QAR|Pv(QAR)|P PVvR| (PvQ) A(PVR) | (Pv(QAR)) = ((PvQ) A(PVR))
t t t t t

av)
o

HhirFh|ct|ct|Hh|Hh |||
Hh|ct|Fh|ct|Fh|ct|Hh|ct| D

FhiFh|ct|ct|ct|ct|ct|ct| <

Hh|Hh|Hh ||t |t |t |t
H|Hh|Hh|ct| | Hh| Hh
Hh|Hh|Hh|ct|ct|ct|ct
H|ct|Hh|ct|ct|ct|ct
Hh|Hh|Hh|ct|ct|ct|ct
ct|{ct|ct|ct|ct|ct|ct

Truth tables were based on the definition thabrmula is a tautology if it is true under every
interpretation However, using truth tables for evaluating the truth of arfola quickly becomes
infeasible. For larger formulas, we should therefore lomke better method — something that is
fairly schematic, but doesn't rely checking individualwations anymore.

Before we go into that | would like to investigate a few thema issues

3.3 How many truth tables are there?

22" - way to many to store them for table lookup

example n=2 - write down all 4 options, then assign truth @alsystematically to get 16 entries,
identify them by name. | went through half of them, asking them to identify the rest

Sheffer StrokeX |Y is true iff one of X andY is false.

3.4 How many boolean operations do we need?

We have identified 16 different boolean operations on 2 et there will be 256 on 3 variables
and even more on 4, 5 etc. It will obviously be impossible teahthe satisfiability of a formula
with hundreds of different operations. So how many do wealtmeed?

We call a boolean operatiamp definablefrom opy, ..op,, if it can be expessed in terms @, ..opy,
that is ifop(X1, ..X,,) is functionally equivalent to a formula that only uses, ..opy.

When we look at truth tables it becomes obvious that all nbaglean operations can be expressed
by -, v, andx.

Example implicatiorp = g=-pvgq
Show everythis is definable vieor — what do we have to do? | forgot to do this
Homework: all via Sheffer Stroke

3.5 Generating Normal forms

TT yields DNF (complexity?): Build whole table - spaceisrows,n+1 entries
Conversion via De Morgan?: provide 3 laws to mevaside andv to the outside
Conversion to CNF is exponential in the wost case

SAT is easy with DNF (make one of the rows true, find the vatrefiom the clause)

SAT procedures usually do NOT start with DNF but often withFE(& Matrix, usually shorter).
That makes it difficult, because we can’t look at just a sirgéaise anymore. While it is true,
taht the formula is unsatisfiable, if one clause is this isthetreal issue. You will hardly have a
problem formulation where a single clause is already ungaeg would that be the case??). Itis
the interaction between the clauses that makes it difficMé.have to find a valuation that makes
all clauses true. If for each valuation one of these CNF @aevaluates to false, then the formula
is unsatisfiable.

3.6 Why can we often find efficient solutions anyway?

3.7 Davis Putnam

The DPLL/Davis-Putnam-Logemann-Loveland algorithm i®eplete, backtracking-based algo-
rithm for deciding the satisfiability of propositional lagiormulae in conjunctive normal form, i.e.
for solving the CNF-SAT problem.

It was introduced in 1962 by Martin Davis, Hilary Putnam, @goLogemann and Donald W.
Loveland, and is a refinement of the earlier Davis-Putnarardlgn, which is a resolution-based
procedure developed by Davis and Putnam in 1960. Espeamatiider publications, the Davis-
Logemann-Loveland algorithm is often referred to as thei®&utnam method or the DP algo-
rithm. Other common names that maintain the distinctiorDdrke and DPLL.

DPLL is a highly efficient procedure, and after more than 4argestill forms the basis for most
efficient complete SAT solvers, as well as for many theoreavens for fragments of first-order
logic.

The basic backtracking algorithm runs by choosing a litersdigning a truth value to it, simplify-
ing the formula and then recursively checking if the simetifformula is satisfiable; if this is the
case, the original formula is satisfiable; otherwise, theeseecursive check is done assuming the
opposite truth value. This is known as the splitting ruleitaplits the problem into two simpler
sub-problems. The simplification step essentially remalledauses which become true under the
assignment from the formula, and all literals that beconsefaiom the remaining clauses.

Example:C; ACy AC5 ... (Mmake one up with 4 variablesq, r, s)

e if X is empty return satisfiable (why?: no requirements to satisf
¢ if X contains an empty clause then return unsatisfiable

e Simplify using the techniques below

Setp to be true (split)

Drop every clause containing(why?: C; evals to true, we don’t need it anymore)

Drop every—p from the remaining clauses (why?:Gf; evals to true, then it doesn’t have to
do with —p, which is false)

The formula doesn’t contaimanymore
Repeat splitting the remaining variables in the remainorgiula X’
If the result is that formul& is unsatisfiable setto be false and do the same

The DPLL algorithm enhances over the backtracking algoritty the eager use of the following
rules at each step:

Unit propagation If a clause is a unit clause, i.e. it contains only a singlessigmed literal, this
clause can only be satisfied by assigning the necessary teatnake this literal true. Thus,
no choi ce is necessary. In practice, this often leads tametestic cascades of units, thus
avoiding a large part of the naive search space.

Drop C; = ¢ and every clause containigghen drop every-p from the remaining clauses

Pure literal elimination : If a propositional variable occurs with only one polarity the for-
mula, it is called pure. Pure literals can always be assigmadwvay that makes all clauses
containing them true. Thus, these clauses do not constraisgarch anymore and can be
deleted. While this optimization is part of the original DP&lgorithm, most current imple-
mentations omit it, as the effect for efficient implemerdas now is negligible or, due to the
overhead for detecting purity, even negative.

Drop all clauses containing pure literals.

Both improvements are obvious, when one looks at the DPLIcqutore from the perspective:
what can | do before | split? Both look at situations wheregpiéting rule runs into a special case
where we don’t need to backtrack. Unit propagation meanktéral in the clause MUST be made
true (we don’t have a choice) , pure literal elimination nea® have a literal that SHOULD be
made true because making it false will not contribute to tietsn.

Unsatisfiability of a given partial assignment is detecfaxhe clause becomes empty, i.e. if all its
variables have been assigned in a way that makes the congisgditerals false. Satisfiability of
the formula is detected either when all variables are assgligrithout generating the empty clause,
or, in modern implementations, if all clauses are satisfistsatisfiability of the complete formula
can only be detected after exhaustive search.

