
What is Logic? 
 
  
 
The study of logic has evolved for nearly 2,500 years, since Aristotle’s work (350 BCE) 
and writings of the Stoics about the logos. For the Greeks, logic was the study of correct 
argument expressed in a syllogism. Leibniz (1666) explained the potential of logic to 
create a universal language for codifying human knowledge and mechanically resolving 
scientific and legal questions. He accepted the idea that the mind works by computation.  
Boole built on those ideas and created a calculus of logical operations in 1854, now 
known as Boolean algebra. We will start the course with a modern version of his 
calculus, called propositional logic. This logic expresses one of the deepest open 
questions in mathematics and computer science, finding the intrinsic computational 
difficulty of determining whether a formula in propositional logic can be true. This is the 
famous P=NP question, one of the seven Millennium Prize Problems in mathematics 
worth one million dollars. 
 
  
 
Boole believed that his calculus captured many of the laws of thought, and while his was 
a very mathematical analysis, it was inadequate to express much of the reasoning actually 
used day to day in mathematics.  His calculus was however well suited to describe 
hardware circuits and has been used for decades in industrial circuit design.  In 1879 
Frege created the predicate calculus as a way to avoid errors in mathematical reasoning 
and proof.  His calculus extends Boole’s and is the basis of modern logic.  It is a central 
part of all logic courses because it expresses most mathematical arguments as well as 
reasoning used in science and law.  In this course the topic is called first-order logic, the 
title of the required textbook as well. Most logic courses teach students how to express 
ideas in first-order logic, and this logic is also used to study the semantics of natural 
language and to investigate some of the paradoxes about truth in natural language such as 
the meaning of the assertion “This sentence is false”, a version of the Liar paradox.  
Some paradoxes lead to contradictions others have led to extensions of logic. 
 
  
 
Russell created a logical theory to express all mathematical concepts based on Frege’s 
analysis. His logic, called type theory, was also designed to avoid Russell’s paradox, a 
paradox which arose in a certain application of Frege’s logical foundation for arithmetic 
and lead to a contradiction.  Russell and Whitehead used type theory in their famous book 
Principia Mathematica published in 1910 and purporting to provide a rigorous 
contradiction-free foundation for all mathematics. In 1931, Godel proved a remarkable 
incompleteness theorem that neither Principia Mathematica nor any equivalent theory 
could prove all true statements of the theory unless it was contradictory. Godel’s proof 
used a kind of self reference seen in the Liar paradox, but in a non-contradictory way.  
This major discovery raised philosophical questions about the limits of human knowledge 
that remain with us today, as do various logical paradoxes, some already known to the 



Greeks.  Godel’s result can be interpreted to say that no machine can know all truths of 
this theory, but could a human know them?  Are minds more potent than machines? 
These issues became more urgent with the advent of powerful digital computers and the 
possibility of machine intelligence.  We will examine such questions when we study type 
theory. Church simplified Russell’s type theory to create a version called simple type 
theory -- also called higher-order logic. We will study higher-order logic in the course.  
Godel’s theorem applies to this logic as well. 
 
  
 
Church and Turing in 1936 laid the foundations for computer science by defining 
equivalent notions of computability – Church for software, Turing for hardware.  Their 
ideas were used to make precise the insights of Brouwer from 1900 that mathematics is 
based on fundamental human intuitions about numbers and human computation. This use 
of logic was able to shed light on the long standing philosophical question about the basis 
for mathematical truth and role of computation in human thought, a question already 
studied by Leibniz.  In particular, Turing’s work explained the core of Godel’s famous 
incompleteness theorem, and it led to his predictions about machine intelligence and his 
famous Turing test for intelligence. He agreed with Leibniz that the mind works by 
computation.  On the other hand, Turing’s work raised the question of whether human 
computation (“effective computation”) is the same as mechanical computation.  The 
Church/Turing Thesis is that they are the same.  Brouwer disagreed.  We will present a 
modern version of Turing’s explanation of Godel’s theorem in the last section of the 
course.  The ideas that shed light on these important philosophical issues have also been 
extremely useful in computer science for specifying properties of software systems and 
proving them as we will show in the topic called Computational Type Theory. 
 
  
 
Major Course Topics 
 
  
 
Propositional Logic 
 
First-Order Logic 
 
Higher-Order Logic 
 
Computational Type Theory 
 


