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Propositional Formulas

The set of propositional formulas, or formulas of propositional
logic, is the smallest set formed from

e variables: “officially” a fixed infinite set of symbols
{po, p1,p2,...}, informally, any string like “v1”, “p”, “23” of
letters or digits with no spaces.

e connectives =V A: if ¢ and 9 are formulas then (—t),
(11 V 1), and (101 A 1p9) are formulas.

Induction on formulas: If for every variable p, and all formulas
Y1 and g,
e P(p) is true

e P(1) and P(vs) implies P((11 A12)) and P((11 V 13)) and
P((—t1))

e then P(1)) holds for all formulas ).




Interpretations and Valuations

An interpretation (also called an assignment or a state) is a

function o from variables to truth values {t, f}

A wvaluation is a function val from formulas to truth values such
that:

o val((¥1 N1p)) =t if and only if val(y) =t and val(y) =t
e val((¢1 Vo)) =1t if and only if val(y1) =t or val(ys) =1t

e val((—)1)) =t if and only if val(y1) # t (i.e. val(yy) = f)

Definition A valuation val ertends an interpretation o if

val(p) = o(p) for every variable p.

Lemma For each interpretation there is exactly one valuation that
extends it.

proof: By induction on formulas.




Example

If o(p1) =t, o(p2) =t, o(ps) = f, o(ps) = f, and val, extends o,
then

(vale(p1) or vals((—p2))) & (valy((—ps))
(o(p1) or not(val,(p2))) & (not(vals(ps))
(t or not(o(p2))) & (not(o(

(t or not(t)) & (not(f)
(tor f) & (




Validity and Satisfiability

Definition A formula % is valid if, for every valuation, val,
val(y) = t.
For example: (pV (—p)) is valid

Definition A formula ) is satisfiable if, for some valuation, val,
val(y) = t.

For example: (p A q) is satisfiable but not valid, (p A (—p)) is not
satisfiable.

Lemma: If two valuations val; and vals agree on every variable in

formula 1, then valy (1) = vals ().
Corollary: If ¢ has N variables, then to decide whether v is valid

or satisfiable, we need check only 2"V valuations.




Truth tables and Disjunctive Normal
Form

The truth table for formula 1 with N variables is a list of the 2%
assignments, o, to the variables and the corresponding value
valy(1). Each row corresponds to a conjunction of literals, a

variable or negation of a variable.

zy | ((zV(7y) A(-z) Vy)) ((=2) A (7))

tt t
t f f
ft f
f f t

The validity and satisfiability of a formula is immediately evident
from its truth table. We can also compute a disjunctive normal
form (DNF) for the formula (V the rows that have val = t).




Truth functional implication and
equivalence

Definition Formula 1 truth functionally implies formula 1) if,

every valuation that makes 11 true also makes 15 true.

Definition Formulas v and )y are truth functionally equivalent
(11 = o) if, every valuation that makes one of then true also

makes the other true.

Lemma: A formula is truth functionally equivalent to its DNF.




Algebraic Laws (Commutative and
Associative)

(1 A o
(1 A (2 Aps)

(2 A1)
= ((¥1 Ap2) As)
(Y2 V1)
(¥1 V (2 V 43) (1 Vh2) V 4s)

These laws imply that for any finite set of formulas {¢;|i € I},
VA{wili € I} and A{v;|i € I} are well defined.
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Algebraic Laws (DeMorgan and
Distributive)

(= \/{wili € 1})
(= N\{wili € 1})
\/Awili € T A \H{os15 € J})
(N{wili € TV N{gsli € J})
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Example Application




