

Outline

- Propositional formulas
- Interpretations and Valuations
- Validity and Satisfiability
- Truth tables and Disjunctive Normal Form
- Truth functional implication and equivalence
- Algebraic Laws (DeMorgan and Distributive)
- Example Application

Propositional Formulas

The set of *propositional formulas*, or formulas of propositional logic, is the smallest set formed from

- variables: "officially" a fixed infinite set of symbols $\{p_0, p_1, p_2, \ldots\}$, informally, any string like "v1", "p", "23" of letters or digits with no spaces.
- connectives $\neg \lor \land$: if ψ_1 and ψ_2 are formulas then $(\neg \psi_1)$, $(\psi_1 \lor \psi_2)$, and $(\psi_1 \land \psi_2)$ are formulas.

Induction on formulas: If for every variable p, and all formulas ψ_1 and ψ_2 ,

- P(p) is true
- $P(\psi_1)$ and $P(\psi_2)$ implies $P((\psi_1 \wedge \psi_2))$ and $P((\psi_1 \vee \psi_2))$ and $P((\neg \psi_1))$
- then $P(\psi)$ holds for all formulas ψ .

Interpretations and Valuations

An interpretation (also called an assignment or a state) is a function σ from variables to truth values $\{t, f\}$

A *valuation* is a function *val* from formulas to truth values such that:

- $val((\psi_1 \wedge \psi_2)) = t$ if and only if $val(\psi_1) = t$ and $val(\psi_2) = t$
- $val((\psi_1 \vee \psi_2)) = t$ if and only if $val(\psi_1) = t$ or $val(\psi_2) = t$
- $val((\neg \psi_1)) = t$ if and only if $val(\psi_1) \neq t$ (i.e. $val(\psi_1) = f$)

Definition A valuation val extends an interpretation σ if $val(p) = \sigma(p)$ for every variable p.

Lemma For each interpretation there is exactly one valuation that extends it.

proof: By induction on formulas.

Example

If $\sigma(p_1) = t$, $\sigma(p_2) = t$, $\sigma(p_3) = f$, $\sigma(p_4) = f$, and val_{σ} extends σ , then

$$val_{\sigma}(((p_{1} \vee (\neg p_{2})) \wedge ((\neg p_{3}) \vee p_{4}))) =$$

$$val_{\sigma}((p_{1} \vee (\neg p_{2}))) \& val_{\sigma}(((\neg p_{3}) \vee p_{4})) =$$

$$(val_{\sigma}(p_{1}) \text{ or } val_{\sigma}((\neg p_{2}))) \& (val_{\sigma}((\neg p_{3})) \text{ or } val_{\sigma}(p_{4})) =$$

$$(\sigma(p_{1}) \text{ or } not(val_{\sigma}(p_{2}))) \& (not(val_{\sigma}(p_{3})) \text{ or } \sigma(p_{4})) =$$

$$(t \text{ or } not(\sigma(p_{2}))) \& (not(\sigma(p_{3})) \text{ or } f) =$$

$$(t \text{ or } not(t)) \& (not(f) \text{ or } f) =$$

$$(t \text{ or } f) \& (t \text{ or } f) =$$

$$t \& t = t$$

Validity and Satisfiability

Definition A formula ψ is *valid* if, for *every* valuation, val, $val(\psi) = t$.

For example: $(p \lor (\neg p))$ is valid

Definition A formula ψ is *satisfiable* if, for *some* valuation, val, $val(\psi) = t$.

For example: $(p \land q)$ is satisfiable but not valid, $(p \land (\neg p))$ is not satisfiable.

Lemma: If two valuations val_1 and val_2 agree on every variable in formula ψ , then $val_1(\psi) = val_2(\psi)$.

Corollary: If ψ has N variables, then to decide whether ψ is valid or satisfiable, we need check only 2^N valuations.

Truth tables and Disjunctive Normal Form

The truth table for formula ψ with N variables is a list of the 2^N assignments, σ , to the variables and the corresponding value $val_{\sigma}(\psi)$. Each row corresponds to a conjunction of literals, a variable or negation of a variable.

The validity and satisfiability of a formula is immediately evident from its truth table. We can also compute a disjunctive normal form (DNF) for the formula (\lor the rows that have val = t).

Truth functional implication and equivalence

Definition Formula ψ_1 truth functionally implies formula ψ_2 if, every valuation that makes ψ_1 true also makes ψ_2 true.

Definition Formulas ψ_1 and ψ_2 are truth functionally equivalent $(\psi_1 \equiv \psi_2)$ if, every valuation that makes one of then true also makes the other true.

Lemma: A formula is truth functionally equivalent to its DNF.

Algebraic Laws (Commutative and Associative)

$$(\psi_1 \wedge \psi_2) \equiv (\psi_2 \wedge \psi_1)$$

$$(\psi_1 \wedge (\psi_2 \wedge \psi_3)) \equiv ((\psi_1 \wedge \psi_2) \wedge \psi_3)$$

$$(\psi_1 \vee \psi_2) \equiv (\psi_2 \vee \psi_1)$$

$$(\psi_1 \vee (\psi_2 \vee \psi_3)) \equiv ((\psi_1 \vee \psi_2) \vee \psi_3)$$

These laws imply that for any finite set of formulas $\{\psi_i | i \in I\}$, $\bigvee \{\psi_i | i \in I\}$ and $\bigwedge \{\psi_i | i \in I\}$ are well defined.

Algebraic Laws (DeMorgan and Distributive)

$$(\neg \bigvee \{\psi_i | i \in I\}) \equiv \bigwedge \{(\neg \psi_i) | i \in I\}$$

$$(\neg \bigwedge \{\psi_i | i \in I\}) \equiv \bigvee \{(\neg \psi_i) | i \in I\}$$

$$(\bigvee \{\psi_i | i \in I\} \land \bigvee \{\phi_j | j \in J\}) \equiv \bigvee \{(\psi_i \land \phi_j) | i \in I, j \in J\}$$

$$(\bigwedge \{\psi_i | i \in I\} \lor \bigwedge \{\phi_j | j \in J\}) \equiv \bigwedge \{(\psi_i \lor \phi_j) | i \in I, j \in J\}$$

