6 May 2022 Bounding Mixing Times

E-mixing time τ means: for any initial distrib π_{0}, for all $t \geqslant \tau$,

$$
\left\|\pi_{t}-\pi\right\|_{T V} \leqslant \varepsilon
$$

where π denotes stationary distribution, π_{t} clenotes time t distribution.

Coupling with transitive matrix ρ and initial distributions $\pi_{0}, \pi_{0}^{\prime}$ is a sequence of pairs

$$
\begin{aligned}
& \left\{\left(x_{t}, x_{t}^{\prime}\right) R_{t=0,1,2, \ldots}\right. \text { sit. } \\
& x_{0}, x_{1}, \ldots \rightarrow \text { is a Makos chain } p \\
& x_{0, x_{1}^{\prime}, \ldots} \text { with trans mite } p \\
& x_{0} \sim \pi_{0} \quad x_{0}^{\prime} \sim \pi_{0}^{\prime}
\end{aligned}
$$

Marker Coupling Lemma: for transition matrix P, to prove E-mix time is $\leqslant \tau$, it suffices to show for all initial state distribs π_{0}
\exists a Markov coupling with transition watt P and initial distribs π_{0}, π_{1} such that

$$
\forall t \geqslant \tau \quad \operatorname{fr}\left(x_{t} \neq x_{t}^{\prime}\right) \leq \varepsilon_{i}
$$

Glacier dynamics: Markov chair on proper of-coloings of graph $G=(U, E)$ defined by this state transition depamizs: in state $x_{i} \vee \longrightarrow[q]$

- close $v \in V, \quad c \in[q]$ uniformly at sanctum
- let $y: V \rightarrow[\varepsilon]$ be defined as

$$
y(u)=\left\{\begin{array}{ccc}
c & \text { if } & u=v \\
x(u) & \text { if } & u \neq V
\end{array}\right.
$$

- if y is a proper colaing transition to y else remain at x.

Assume max degree of G is $\Delta, \quad q>4 \Delta$.
Couple X_{t}, X_{t}^{\prime} by proposing to recolor same vertex v_{t} with same color c_{t} in both Markov chairs.

Analyze $\operatorname{Pr}\left(x_{t} \neq x_{t}^{\prime}\right)$ using tramming distance

$$
\left.d_{t}=\# u \mid X_{t}(u) \neq X_{t}^{\prime}(u)\right\}
$$

Observe $d_{t} \geqslant 1$ when $x_{t} \neq x_{t}^{\prime}$ so $\operatorname{Pr}\left(x_{t} \neq x_{t}^{\prime}\right) \leq \mathbb{E}\left[d_{t}\right]$.
How does d_{t+1} differ from d_{t} ?

$$
d_{t}-d_{t+1} \in\{-1,0,1\} \quad\left(\begin{array}{l}
v_{t} \text { is the only } \\
\text { vertex whose } \\
\text { cobs changed }
\end{array}\right)
$$

$d_{t+1}=d_{t}-1$ when a color merge takes place.

$$
\begin{aligned}
& x_{t}\left(v_{t}\right) \neq x_{t}^{\prime}\left(v_{t}\right) \quad \text { but } \\
& x_{t+1}\left(v_{t}\right)=x_{t+1}^{\prime}\left(v_{t}\right)=c_{t}
\end{aligned}
$$

Color merge happens exactly when

- v_{t} is one of the d_{t} vertices colored detceroty in X_{t}, X_{t}^{1}
$-C_{r}$ is not ane of the neighbors' colors in x_{t} or x_{t}^{\prime}. $\geqslant \frac{q-2 \Delta}{q}$ $\operatorname{Pr}($ color merge $) \geqslant\left(\frac{q-2 \Delta}{g}\right)\left(\frac{d t}{n}\right)$
$d_{t+1}=d_{t}+1$ when a color split occurs.

$$
-X_{t}\left(v_{t}\right)=X_{t}^{\prime}\left(v_{t}\right)
$$

- $X_{t+1}(v)=c_{t}, X_{t .1}^{\prime}\left(v_{t}\right) \neq c_{t}$ or vice-versa because \exists neighbor ω s.ti $X_{t}(\omega) \neq c_{t}, X_{t}^{\prime}(\omega)=c_{t}$ or $\quad x_{t}(w)=c_{t}, \quad X_{t}^{\prime}(w) \neq c_{t}$.
Blame the spit on directed edge $\left(v_{t}, w\right)$.
Every color split can be blamed on at least one edge.
$\operatorname{Pr}($ color spirit $) \leqslant \mathbb{E}$ [Gamed edges]

$$
\begin{aligned}
& \quad=\sum_{(v, \omega)} \underbrace{\operatorname{Pr}((v, \omega) \text { is blamed for a cor clit) }}_{=0} \\
& \leqslant d_{\begin{array}{l}
\text { unless } w \text { is one of the } d_{t} \\
\text { vertices where } x_{t} \notin x_{t}^{\prime}
\end{array}} \begin{array}{ll}
\text { and } c_{t} \in\left\{x_{t}(w), x_{t}^{\prime}(w)\right\}
\end{array} \\
& =\frac{d_{t}}{n} \cdot \frac{2 \Delta}{8}
\end{aligned} \quad \begin{array}{ll}
\text { and } & v_{t} \text { is neighbor of } w_{1}
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Pr}(\text { cover merge })=\left(\frac{q-2 g}{n g}\right) d t \\
& \operatorname{Pr}(\text { color spit }) \leqslant\left(\frac{2 b}{\operatorname{nig}}\right) d_{t} \\
& \mathbb{E}\left[\begin{array}{l|l}
d_{t+1} & d_{t}
\end{array}\right]=d_{t}-\operatorname{Pr}(\text { cor made })+\operatorname{Pr}(\text { color spit }) \\
& \leqslant d_{t}-\left(\frac{q-2 \Delta}{n_{q}}\right) d_{t}+\left(\frac{2 \Delta}{n_{q}}\right) d_{t} \\
& =\left(1-q \frac{-4 \lambda}{n q}\right) d t
\end{aligned}
$$

Induct on t :

$$
\begin{aligned}
\mathbb{E}\left[d_{t}\right] & \leqslant\left(1-\frac{q-4 \Delta}{n q}\right)^{t} d_{0} \\
& \leqslant\left(1-\frac{q-4 \Delta}{n q}\right)^{t} n \\
& <\exp \left(-\left(\frac{q-4 \Delta}{n q}\right) t+\ln (n)\right)
\end{aligned}
$$

To make this $\leqslant \varepsilon$, we need

$$
\begin{aligned}
& \exp \left(-\left(\frac{q-4 \Delta}{n g}\right) t+\ln (n)\right) \leqslant \varepsilon \\
& \left(\frac{q-4 \Delta}{n q}\right) t-\ln (n) \geqslant \ln \left(\frac{1}{\varepsilon}\right) \\
& \left.t \geqslant\left(\frac{q}{q-4 \Delta}\right) n \ln \left(\frac{n}{\varepsilon}\right)\right]
\end{aligned}
$$

