6 May 2022	Bounding	Mixing -	limes	
E-mixing time	t means:	for any	निर्मान्द्री ट	listób Tco/
	ll Tit - Till. Tolerates wotas time	TV < E	iladion,	
	An transition			of pairs
$\{(x^{+}, x_{1}^{+})\}$	P+=0,1,2,	s.t.		
	χ.,		y	
Markor Couplin	y Leunma: For +Time is	transition me	it suffices	to show
3	a Murkov dist	coupling with	transition	wtx P
	Ytar			

Glauber dynamics: Markov chair on proper g-coloings of graph G= (V, E) defined by this state transition dynamics: in state xiV = Lg] - choice VEV, CF[g] unitamy at vandon - let y: V -> [q] be defined as - if y is a proper coloring transition to y dee remain at X. Account max degree of G is D, 9>41 Couple X_t, X_t' by proposing to recolor same vertex V_t with same color C_t in both Markov chairs. Analyse Pr(Xt +Xt) using Hamming Wistonice $d_{t} = \# \{u \mid X_{t}(u) \neq X'_{t}(u) \}$ Observe $d_{+} \ge 1$ when $X_{+} + X_{+}' + \infty$ $\Re(X_{+} + X_{+}') \le \mathbb{E}[d_{+}]$. thow does of differ from dy?

dt-dt+1 \(\xi \) \(\xi \ d_{t+1} = d_t-1 when a color merge takes place.

Pr(color spit)
$$\leq \frac{(9-28)}{ng}d_{t}$$

Pr(color spit) $\leq \frac{(28)}{ng}d_{t}$

The color spit) $\leq \frac{(28)}{ng}d_{t}$

The color spit) $\leq \frac{(28)}{ng}d_{t}$

The color spit) $\leq \frac{(2-24)}{ng}d_{t}$

The color spit $= \frac{(2-24)}{ng}d_{t}$

The color spit) $= \frac{(2-24)}{ng}d_{t}$

The color spit