4 May 2022 Mixing time and coupling
Recall Metroplis-Hastings... (MCMC)
Finite set X (think: \mathbb{Z} expeneatiolly large
e.g. $Z=\{$ functions $V(\sigma) \rightarrow[q]\}$ \}

Distribution $\pi(x)=\frac{w(x)}{\sum_{y \in \bar{X}} w(y)}$ that we wish to sample from.
Strategy: Run Markov chain with transition matrix P such feat $\pi P=\pi$ until it "mixes", meaning state distrib gets close to π.
Then output the current state; it will be an approximate sample from π.
Metroplis-Hastings: given a different Markov chain K on I with $K_{x y}=K_{y x}$. \Leftrightarrow uniform district is stationary for K.) Want to medity K into a Markov chain P such that (a) $\pi P=\pi$
(10) Easy to simulate one state transition of P.

$$
P_{x y}=K_{x y} \cdot \frac{\min \{w(x), w(y)\}}{w(x)} .
$$

$P:$ Given current state x

1. Randan sample "proposed react state" y with pars $K_{x y}$.
2. Transition to y with prob $\frac{\min \{w(x) w(y)\}}{w(x)}$.

Assumption is that bath K and ρ will be implemented lily subroutines that input state x and output state y with probability $K_{x y}$ os $P_{x y}$ respectively.
Eg. Metroplis-Hastings for sampling random proper q-coloring of soph G.

$$
\begin{aligned}
& X=\{\text { functions } \quad v(G) \rightarrow[q]\} \\
& w(x)=\left\{\begin{array}{llll}
1 & \text { if } & x(u) \neq x(v) & \forall \text { edge }(u, v) \\
\phi & \text { if } & x(u)=x(v) & \text { for some edge }(u, v)
\end{array}\right.
\end{aligned}
$$

For K, we will use a very simple subroutine. In state x, pick a unit tandem vertex $v \in V(\sigma)$ a unit roudom color $c \in[q]$ and modify the cole of v to equal c.
ie. output state $y: V(G) \rightarrow[q]$ sit.

$$
y(u)=\left\{\begin{array}{cc}
c & \text { if } u=v \\
x(u) & \text { if } u \neq v
\end{array}\right.
$$

Def Hamming distance $d(x, y)$ is

$$
\begin{gathered}
d(x, y)=\text { \# }\{v \mid x(v) \neq y(v)\} \\
K_{x y}=\left\{\begin{array}{lll}
0 & \text { if } d(x, y)>1 \\
\frac{1}{n \cdot g} & \text { if } & d(x, y)=1 \\
\frac{1}{q} & \text { if } & d(x, y)=0
\end{array} \quad K_{x y}=K_{y x}\right. \text { blaming dist is }
\end{gathered}
$$

metropild - Hastings for this particular K says.
Given current stance x. (Assume x a proper coloring.)

1. Sample y with probability $K_{x y} . \Rightarrow w(x)=1$ Pick random $v \in V(G), \quad c \in[q]$, try setting $y=\{x$ with \vee recolored as $c\}$.
2. Transition to y with probability $\frac{\min \{w(x), w(y)\}}{w(x)}$,

$$
\begin{aligned}
\operatorname{Prob}(\text { trans }) & =\min \{1, w(y)\}=w(y) \\
& =\left\{\begin{array}{cl}
1 & \text { if } y \text { is proper coloring } \\
\varnothing & \text { if wot. }
\end{array}\right.
\end{aligned}
$$

Test if color C matches the color of a neighbor of u
If so, vo transition. (Output x) If not, output y.

After how mary stops can we terminate the Markov chain, safe in the knowledge that its marginal distribution is near stationary?

Def= If π, π^{\prime} are pros. distints, their total variation distance is

$$
\begin{aligned}
\left\|\pi-\pi^{\prime}\right\|_{T V} & =\max _{S \subseteq \bar{X}}\left\{\pi(S)-\frac{1}{\pi(S)}\right\} \\
& =\frac{1}{2}\left\|\pi-\pi^{\prime}\right\|_{1}
\end{aligned}
$$

For us, "near stationary" will mean ε-close to the stationary distend in total variation distance.

Def. A coupling of two Markov chains gm, M2 is a probability distil. over sequences of pairs $\left(X_{t}, X_{t}^{\prime}\right)$ such that the marghal distrib of $X_{0}, X_{1}, X_{2}, \ldots$ is a random sample from M_{1},

$$
x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime} \cdots \cdots \cdots M_{2}
$$

Lemma. If $\left\{\left(X_{t}, x_{t}^{\prime}\right)\right\}$ is a coupling of two Markov chains with same state set X, same
transition matrix p and with X_{0}^{\prime}
drown from π, stationary distils of P then the marginal distrib of X_{t}, called $\pi_{t^{\prime}}$ Satisfies

$$
\left\|\pi_{t}-\pi\right\|_{\pi v} \leq \quad \operatorname{Pr}\left(X_{t} \neq X_{t}^{\prime}\right) .
$$

Proof. Since X_{0}^{1} is down from π and $x_{0}^{\prime}, x_{1}^{\prime}, \ldots . f_{0}$ follows transition matrix P whose stationary dirtrib is π, it means $X_{t}^{\prime} \sim \pi$ for all $t>0$. (Induct on t_{1})
By definition of TV distance, to prove inequality in Lemma we must show

$$
\begin{aligned}
& \pi_{t}(s)-\pi(s) \leqslant \operatorname{Pr}\left(x_{t} \neq x_{t}^{\prime}\right) \quad V s \subseteq \bar{X} \\
& \operatorname{Pr}\left(X_{t} \in S\right)-\operatorname{Pr}\left(X_{t}^{\prime} \in S\right)
\end{aligned}
$$

If $X_{t} \in S$ then either $X_{t}^{\prime} \in S$ or $X_{t} \neq X_{t}^{\prime}$. \Downarrow (union hod)

$$
\begin{gathered}
\operatorname{lr}\left(x_{t} \in S\right) \leqslant \operatorname{Pr}\left(x_{t}^{\prime \prime} \in S\right)+\operatorname{Pr}\left(x_{t} \neq x_{t}^{\prime}\right) \\
\operatorname{Pr}\left(x_{t} \in S\right)-\operatorname{Pr}\left(x_{t}^{\prime} \leqslant 5\right) \leqslant \operatorname{Pr}\left(x_{t} \neq x_{t}^{\prime}\right)
\end{gathered}
$$

