2 May 2022 Stationary Distributions, Reversibility, Metrpolis-Hastings
Announcement:

- You don't need the auxiliary data structure in the query phase.
- Quiz 3 is 90% graded, hopefully we finish today.

Markov chain.

- Finite set X of stakes.
- Transition matrix P.
- $P_{x y}$ is the pul. of beng in state y at $t+1$ given the time state is x,

$$
\begin{aligned}
& l \longrightarrow \operatorname{Pr}=1 / 2 \\
& \rho \overrightarrow{1}=\overrightarrow{1} \\
& {\left[\begin{array}{c}
\pi \rho=1 / 4 \\
\|\pi\|_{1}=1
\end{array}\right] \Longrightarrow \quad \begin{array}{l}
\pi \text { is a stationary } \\
\text { distribution of } P \text { ? }
\end{array}}
\end{aligned}
$$

Does ρ have a stationary distil?
Yos, as long as X is finite.
Is it unique?
Yes, if the state transition graph is strongly connected.
(via Perron-Frobenius.)

No, in general.

(An absorbing Markov chain.)
Does the marginal distribution of the state at time t converge to the stationary distris as $t \rightarrow \infty$?
N_{2} in general.
Yes, if the Markov chain is ergodic
Def. 1. $\exists k<\infty \quad$ Pk has all positive entries,
Def 2. State trans graph is strongly corrected and the GCD of all directed cycle lengths is 1 .
one way of foreng the GCD property to hold is to have at least one state x sit, $P_{x x}>0$.
(Then state trans graph has a cycle of length 1.)

MCMC moiled for sampling from a distribution π :

1. Set up a transition matrix P (ergodic) whose stationary distrib is π.
2. Initialize a Markov chain in Some state.
3. Run state transitions dictated by P [until convergence..
4. Output the find state of simulation.

Often dene using Metwpolis-Hastings procedure. (to be explained now.)

Def. P is reversible with respect to π if

$$
\forall x, y \in \mathbb{Z} \quad \pi_{x} P_{x y}=\pi_{y} P_{y x}^{1}
$$

lemma. If l reversible writ, π then π is stationary for P.
Prof. The $y^{\text {th }}$ coordinate of if is

$$
(\pi P)_{y}=\sum_{x} \pi_{x x y} P_{x y}=\sum_{x} \pi_{y} \rho_{y x}=\pi_{y}\left(\sum_{x} \rho_{y x}\right)=\pi_{y}
$$

Matropiris Hastings takes two inputs:
(A) an unnormalized dirsisbution $w: \mathbb{X} \rightarrow \mathbb{R}_{+}$ such that we wont to sample from

$$
\pi(u)=\frac{\omega(x)}{\sum_{y} \omega(y)}
$$

(B) a symmetric stochastic matrix $K \in \mathbb{R}^{\mathbb{X} \times \mathbb{X}}$ ("proposal distribution")

$$
K_{x y}=K_{y x} \quad K_{x y} \geqslant 0 \quad \forall x, y
$$

The procedure is: in state χ at time t_{1}

1. Draw random sample y distrib. according to $K_{x y}$.
2. If $\omega(y) \geqslant \omega(s a)$, move to state y.
3. If $\omega(y)<\omega(x)$, tors a coin with bias $\frac{w(y)}{w(x) \text {. }}$ Transition to y if the in toss is heads.

$$
p_{x y}=K_{x y} \cdot \frac{\min \{w(x), w(y)\}}{w(x)}
$$

Lemma. Metr-tlast. (ω, K) is reversible wist. π.
Prof. We must show $\forall x, y$

$$
\begin{gathered}
\pi_{x} \cdot \operatorname{Pr}(x \rightarrow y)=\pi_{y} \operatorname{Pr}(y \rightarrow x) \\
\| \\
w(x) \cdot \operatorname{Pr}(x \rightarrow y)=w(y) \cdot \operatorname{Pr}(y \rightarrow x) \\
w(x) \cdot K_{x y} \cdot \frac{\min \{w(x), w(y)\}}{w(x)}=w(y) \cdot K_{y x} \cdot \frac{\min \{w(y), w(x)\}}{w(y)}
\end{gathered}
$$

Yes these are equal.

