29 April 2022 Random Walks and Markov Chains
Markov Chain Monte Carlo: a method for drawing samples from "Complicated implicitly defined probability distributions." (CIDPD)
My model of a CIDPD is a distribution $p: X \rightarrow[0,1]$ where $|X|$ is oppenentivilly large; and we have an efficient algorithm that computes a function $w: X \rightarrow \mathbb{R}_{\geqslant 0}$, and

$$
p(x)=\frac{w(x)}{\sum_{y \in X} w(y)}
$$

Examples:
(1) Given undirected groph G that is q-cubrable for some $q \in \mathbb{N}$, sample a unit random proper q-coloring.

$$
\begin{aligned}
& X=\{\text { functions } V(\sigma) \rightarrow[q]\} \\
& w(x)= \begin{cases}1 & \text { if } x \text { is a proper closing } \\
\varnothing & \text { if not, }\end{cases}
\end{aligned}
$$

(2) Given a DNN with finite-precisibo arithmetic that generates redistic looking images from uniforming ranebom bits in the input layer

Each node computes a (frinte-precision approx of) a non-linear func. applied to a linear combination of the values on its incoming edges.

If nuwol net has n nodes and preckion op \checkmark bits per rode, then

$$
X=\left[2^{6}\right]^{n} \quad\left(x_{1}, \ldots ; x_{n}\right) \in X \text { denotes }
$$

labeling the voles of X wo x_{i}, \ldots, x_{n} respectively.
$w\left(x_{1}, \ldots, x_{n}\right)=\int \varnothing$ if \exists an internal node x_{i} whose value is \neq to the groppriate function of the inputs that node
D if \ni an output node x_{j} which was among the nor-occuluded piet of the image but $x_{j} \neq$ that pixel value
1 otherwise

Markov Chains / Random Walks

DeF, A Markov Chain with state space X and transition matrix P is a sequence of random variables $X_{0,}, X_{1}, \ldots$. sit. $\forall n>0 \quad \forall x, y \in X$

$$
\begin{gathered}
\operatorname{Pr}\left(x_{n}=y \mid x_{n-1}=x\right)=P_{x y} \\
\operatorname{Pr}\left(x_{n} \times y \mid x_{0}, x_{1}, \ldots, x_{n-1}\right)=P_{x_{n-1} y}
\end{gathered}
$$

Far this to be a prob chistribution P must satisfy $\quad \forall x \quad \sum_{y \in X} P_{x y}=1$
(l is "row-stochastic", $\quad \rho \overrightarrow{1}=\overrightarrow{1}$.)
Depicting a Markov Chain with a graph.

$$
V(\sigma)=X \quad E(\sigma)=\left\{(x, y) \mid P_{x y}>0\right\}
$$

label each $(x, y) \in E(G)$ with $P_{x y}$.

$$
\left(\begin{array}{lllll}
0 & 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
1 / 4 & 1 / 4 & 0 & 1 / 4 & 1 / 4 \\
0 & 0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right) \quad 1 / 2\left(\left.\begin{array}{ll}
0
\end{array}\right|_{1 / 2} ^{1 / 2}\right.
$$

Def. $\pi: X \rightarrow[0,1]$ is a stationary dirtinbution for P if $\quad \sum_{x \in X} \pi(x)=1$ and $\forall y \sum_{x \in-X} \pi(x) P_{x y}=\pi(y)$.

We can represent π as a row vector

$$
\left[\begin{array}{llll}
\pi_{x_{1}} & \tau_{12} & \cdots & \pi_{x_{N}}
\end{array}\right]
$$

and then $\forall y \sum_{x} \pi(x) P_{x y}=\pi(y)$

$$
\Leftrightarrow \quad \pi P=\pi .
$$

Does every Markov Chain have a stationary distrib?
Ans. Yes if X is finite.
Recall

$$
\begin{array}{ll}
& P \vec{I}=\overrightarrow{1} \quad \text { so } \quad(P-\mathbb{1}) \cdot \overrightarrow{1}=0 . \\
\text { so } \exists v \neq 0 \quad v(P-\mathbb{1})=0 \text { ie. } \quad v P=v .
\end{array}
$$

Perren-Frobeniles Guarantees v has ≥ 0 coordinates.
Is the stationary distitb unique?
Ans. Not in general. Yes when $\exists m$ sit. P^{m} has all entries strictly >0.
\Leftrightarrow the goal of the lengths of directed cycles in the state transition graph equals 1.

To grove in future lectures: how fast docs a Marker Chain converge to stationary distrib?

