25 Apr	2022	Streaming	Distinct Elem	erts	
			Frequencies		
<u>Annous</u>	rements (Homensk G due one Deiz 4	to be releaded week later	cel Weds (plus 2 day s	grece pand) May 91,
Recep) h(x)	= ax + b	(mad M) uniformly	M≥m, prin	
			representation Llag_(M) spon the and		nres
	(j) A×	h(x) 15	unif distrib	in [M].	
Let) o if			
			# of distinct that Nash		
We		D E[Xi) 2 E[Yi 3 Var [Yi	$=\int =\frac{dk}{m}$		

25 Apr 2022

Algorithm for District Elements Sample randon hash function has above. Let $t = \int \frac{2(1+\epsilon)}{\epsilon^2 \delta}$ Initalize (Z,,,-, Z) = 1 11 Z.,.., Et will store the t smallest distinct values in the set of h(6;) \ i=1,--,n} in increasing order. for 1=1,...,n: Observe token a compute z = h(ai) if z < \(\x' \); update $Z_1,...,Z_t$ to precerve the invariant in the comment above. crafor $Z_1 \approx \frac{M}{d}$ $Z_2 \approx \frac{2M}{d}$, $Z_1 \approx \frac{4M}{d}$ Owtput $\frac{6M}{2}$ 1 17 1 17 1 4 Analysic of the algorithm $Z_t = k = Y_k = t$ and $Y_{k-1} < t$. So, we resort to analyzing γ_k for various values of k.

Two ways the also could fail: - Outputs answer $< (1-\varepsilon)d$.

Since answer $= \frac{\varepsilon M}{2t}$ this $\frac{\varepsilon M}{2t}$ (1-\varepsilon)d => Yk< t for K= [1-8)d] - outputs answer > (1+E)d Corresponds to Zt < tM (Itz)d \Rightarrow $\frac{1}{\sqrt{2}}$ \Rightarrow $E[Y_{\ell}] = \frac{d\ell}{m}$, $Var[Y_{\ell}] < \frac{d\ell}{m}$ Pr (/2 > t) \leftrightarrow \frac{dl/M}{\frac{dl/M}{m} - t)^2} $\frac{dl}{M} = \frac{d}{M} \left[\frac{t}{1+\epsilon} \cdot \frac{M}{d} \right] \leq \frac{t}{1+\epsilon}$ $t - \frac{dl}{M} \geq t - \frac{t}{1+\epsilon} = \frac{\epsilon t}{1+\epsilon}$ $\left(t-\frac{dl}{m}\right)^2 \geq \frac{\epsilon^2 t^2}{(l+\epsilon)^2}$, $t = \left[\frac{2(l+\epsilon)}{\epsilon^2 s}\right]$ $\frac{1}{\varepsilon^{2}t^{2}/(1+\varepsilon)^{2}} = \frac{1+\varepsilon}{\varepsilon^{2}t} \leq \frac{\delta}{2}$

Similar calculation using Chelysher shows 5 the probability of consider < (1-E)d is also \$ 2.

Sketching Model	of Computation
Stream	a,,,,,,,,
Tokens la	ebrs to [m]
	storage space 5 = 0 (pdy (log n, log m)).
After processing	stream, the stored representation
is used to	answer queries from some set Q
of potential	answer queries from some set Queries.
	netty: Y & EQ Pr (answer is & accurate) 2 1-8.
	Estimating Frequencies of tikens.
Query 9((x) for token x asks, many times did X appear in the streem?"
E-accurate	might mean, for example,
answer	might mean for example, to $g(x)$ has additive error $\leq \epsilon n$.