25 Apr 2022 Streaming Distinct Elements Sketching Frequencies

Announcements (1) Homewak 6 to be releared Weds, due one week later (plur 2-day grace penbd)
(2) Qeiz 4 will he in class, Monday, May a_{1}

Recep: $h(x)=a x+b \quad(\bmod M) \quad M \geqslant m$, prime $(a, b) \in[M]^{2}$ uniformly random.
stonng a reprecertation of h requives unly $2 \log _{2}(m)$ space to storel
(1) $\forall x \quad h(x)$ is unif distrib in $[M]$.
(2) $\forall x \neq y$ then $h(x), h(y)$ are independent randem variables.

Let $\quad X_{i k}=\left\{\begin{array}{lll}1 & \text { if } & h\left(a_{i}\right) \leqslant k \\ 0 & \text { if } & h\left(a_{i}\right)>k\end{array}\right.$
$Y_{k}=\sum_{i=1}^{d} X_{i k}=\#$ of disithet elements in stream theat hash to $\{l, \ldots, k\}$.
We praved: (1) $E\left[X_{i k}\right]=\frac{k}{n}$
(2) $\mathbb{E}\left[Y_{k}\right]=\frac{d k}{m}$
(3) $\operatorname{Var}\left[y_{k}\right]<\frac{d k}{m}$.

Algorithm for Distinct Elements
Sample ranlou hash function h as above.
Let $t=\left[\frac{2(1+\varepsilon)}{\varepsilon^{2} \delta}\right]$.
Initodize $\left(z_{1, \ldots,} z_{t}\right)=1^{t}$
/I z_{1}, \ldots, z_{t} will store the t smallest distinct values in the set $\left\{h\left(a_{i}\right) \mid i=l, \ldots, n\right\}$ in increasing order.
for $i=l, \ldots, n$:
observe token a_{i}
compute $z=h\left(a_{i}\right)$
if $z<z_{t}$:
update Z_{1}, \ldots, z_{t} to preserve the invariant in the comment above. end it cuntfor

$$
\begin{aligned}
& \text { condfor } \\
& \text { output } \frac{t M}{z_{t}} . \quad z_{1} \approx \frac{M}{d} z_{2} \approx \frac{2 M}{d} \ldots, z_{t} \approx \frac{t M}{d}
\end{aligned}
$$

Andysis of the algorithm

$$
Z_{t}=k \equiv Y_{k}=t \quad \text { and } \quad Y_{k-1}<t
$$

So, we resort to analyzing Y_{k} for various values of k.

Two ways the algo could fail:

- outputs answer $<(1-\varepsilon) d$.

Since answer $=\frac{t M}{z_{t}}$ this
corresponds to $Z_{t}>\frac{t M}{(1-E) d}$

$$
\Longrightarrow Y_{k}<t \quad \text { for } \quad k=\left\lfloor\frac{t m}{(1-\varepsilon) d}\right\rfloor
$$

- outputs answer $>(1+\varepsilon) d$
corresponds to $z_{t}<\frac{t M}{(1+z) d}$

$$
\Rightarrow y_{l} \geqslant t \quad \text { for } l=\left\lfloor\frac{t M}{(1+z) d}\right\rfloor
$$

$$
\mathbb{E}\left[Y_{l}\right]=\frac{d l}{m}, \quad \operatorname{Var}\left[Y_{l}\right]<\frac{d l}{m},
$$

$$
\operatorname{Pr}(y \geqslant t)_{l}^{\text {Cher }} \leqslant \frac{d l / M}{\left(\frac{d l}{M}-t\right)^{2}}
$$

$$
\frac{d \bar{l}}{M}=\frac{d}{M}\left[\frac{t}{1+\varepsilon} \cdot \frac{M}{d}\right] \leqslant \frac{t}{1+\varepsilon}
$$

$$
t-\frac{d l}{M} \geqslant t-\frac{t}{1+\varepsilon}=\frac{\varepsilon t}{1+\varepsilon}
$$

$$
\therefore\left(t-\frac{d l}{M}\right)^{2} \geqslant \frac{\varepsilon^{2} t^{2}}{(1+\varepsilon)^{2}}, \quad t=\left[\frac{2(1+\varepsilon)}{\varepsilon^{2} \delta}\right] ~=\gamma \leqslant \frac{t /(1+\varepsilon)}{\varepsilon^{2} t^{2} /(1+\varepsilon)^{2}}=\frac{1+\varepsilon}{\varepsilon^{2} t} \leqslant \frac{\delta}{2} .
$$

Similar calculation using Chebyshev shows the probability of answer $<(l-\varepsilon) d$ is also $\leqslant \frac{\delta}{2}$.

Sketching Model of Computation
Stream a_{1}, \ldots, a_{n}
Tokens belong to $[\mathrm{m}]$
Also has storage space $s=O($ poly $(\log n, \log m))$. After processing stream, the stored representation is used to answer queries from some set Q of potential queries.
$(\varepsilon, \delta)-$ PAC property: $\quad \forall g \in Q \quad \operatorname{Ps}\left(\right.$ answer is $\frac{\varepsilon \text {-accurate })}{? ?} \geq 1-\delta$.

Weds lecture: Estimating Frequencies \& tokens.
Query $q(x)$ fir token x asks, "How unary times did X appear in the tram?"
E-accurate might mean, for example, answer to $\delta(x)$ has additive error $\leq \varepsilon n$.

