22 Apr 2022 Streaming Algorithm for Distinct Elements
Input stream a_{1}, \ldots, a_{n}.
Each a_{i} beltings to $\left\{0,13^{b}\right.$ (set of "tokens") $m=2^{b}=$ \& $\&$ possible tokens.
Algorithm with working space $s=p o l y(\log n, \log m)$ observes a_{1}, \ldots, a_{n} one by one, and afterward must estimate \# distinct tokens appearing in the sequence.
GOAL: $(\varepsilon, \delta)-P A C$ meaning: if the number of distinct tokens is d, then

$$
\operatorname{Pr}(A c \sigma \text { 's vutpent is not in }[(1-\varepsilon) d,(l+z) d])<\delta \text {. }
$$

Use hash function $h:\{0,1\}^{b} \rightarrow[M]$
for some large integer M. (typically $M \geqslant 2^{b}$.)
Suppose for now that $a_{1}, \ldots ., a_{d}$ are the \& distinct tokens that popper in the stream and that $h\left(a_{1}\right), h\left(a_{2}\right), \ldots, h\left(a_{d}\right)$ are independent uniformly random elements of [M].

$$
\mathbb{E}\left[\min \left\{h\left(c_{1}\right) \ldots, h\left(c_{d}\right)\right\}\right] \approx \frac{M}{d} .
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(h\left(a_{i}\right), \ldots, h\left(a_{d}\right)>M\right. \\
& \quad=\left(1-\frac{1}{d}\right) d \approx e^{-1} \\
& \operatorname{Pr}\left(\min \left(h\left(a_{i}\right)\right\} \leqslant \frac{M}{2 d}\right) \\
& \leqslant \sum_{i=1}^{d} \operatorname{Pr}\left(h\left(a_{i}\right) \leqslant \frac{M}{2 d}\right) \\
& =\frac{1}{2} .
\end{aligned}
$$

Alg. (1) Initialise $Z=M$
(2) For exch a_{i} in seccersion

- compute $h\left(a_{i}\right)$
- it $h\left(c_{i}\right)<z, \quad z \leftarrow h\left(a_{i}\right)$ /" invariant: offer t iDeations $z-\min \left\{h\left(a_{j}\right) \mid 1 \leqslant j \leqslant t\right\}$
(3) output M / Z as our estimate of d.

Analysis. For $k \in[M]$ let $X_{i k}=\left\{\begin{array}{lll}1 & \text { if } & h\left(a_{i}\right) \leqslant k \\ \phi & \text { if } & h\left(a_{i}\right)>k\end{array}\right.$
Fact $1 \quad \mathbb{E}\left[X_{i k}\right]=\frac{k}{m}$
Fact 2. $\mathbb{E}\left[y_{k}\right]=\frac{d k}{M} \quad \begin{aligned} & h\left(a_{i}\right) \text { is } \\ & \text { uniform } \\ & \text { in }[m]\end{aligned}$
Fact 3. $\operatorname{Var}\left(Y_{k}\right)<\frac{d k}{M}$ for all in

$$
\begin{aligned}
\operatorname{Var}\left(y_{k}\right) & =\mathbb{E}\left(Y_{k}^{2}\right)-\mathbb{E}\left(Y_{k}\right)^{2} \\
& =\sum_{i=1}^{d} \sum_{j=1}^{d} \mathbb{E}\left[X_{i k} X_{j k}\right]-\left(\frac{d k}{M}\right)^{2} \text { h(ai) ard } \\
= & \left.\left.\sum_{i=1}^{d} \mathbb{E}\left[x_{i k}^{2}\right]+2 \sum_{1 \leqslant i<j \leqslant d} \mathbb{E}^{[}\left[X_{i k} X_{j k}\right]^{k}\right]\right)-\left(\frac{d k}{M}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d k}{M}+2\binom{d}{2}\left(\frac{k}{m}\right)^{2}-\left(\frac{d k}{M}\right)^{2} \\
& =\frac{d k}{M}+\left(d^{2}-d\right)\left(\frac{k}{M}\right)^{2}-\left(\frac{d k}{M}\right)^{2} \\
& =\frac{d k}{m}-\frac{d k^{2}}{M^{2}} \\
& <\frac{d k}{M} .
\end{aligned}
$$

Def. A 2-univesal hash function (UHF) is a probability distribution over hash functions that satisfies:
I. $h\left(a_{i}\right)$ is unit. distal. over is range for all i.
II. $h\left(a_{i}\right), h\left(a_{j}\right)$ independent $\forall i \neq j$. "pairwise independence."

Example. Say M is prime, and identify $\{0,1\}^{b}$ with $[m]$, and assume $\quad M \geqslant m$.
Define \quad in as follows: $h_{a b}(x)=a x+b$ (hod M) Sample a, b as indep't, unif random $\bmod M$, set $h=h_{a b}$.

Storing a description of h takes $2 \log (M)$ bits to store a, b.

To veify 2 -universally, must show

$$
\begin{aligned}
& \forall a_{i} \neq a_{j} \quad \operatorname{Pr}_{a, b}\left(h\left(a_{i}\right)=x, \quad h\left(a_{j}\right)=y\right)=\frac{1}{M^{2}} \quad \forall x, y \\
& h_{a b}\left(a_{i}\right)=x, \quad h\left(a_{j}\right)=y \quad \text { means } \\
& {\left[\begin{array}{ll}
a_{i} & 1 \\
a_{j} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] \equiv\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \text { (mad M) }}
\end{aligned}
$$

The linear system has a unique solution (nod M) bic $\mathbb{Z} /(M)$ is a field and $\operatorname{det}\left(\begin{array}{ll}a_{i} & 1 \\ a_{j} & 1\end{array}\right)=a_{i}-a_{j} \neq 0(\bmod M)$

