18 Apr 2022 Streaming Algorithms

Input is a sequence of tokens

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

Each token represented by b bits.

$$
a_{i} \in\{0,1\}^{b}
$$

Number of potential tokens is $m=2^{b}$.
Algorithm has storage space s,
typically assumed $s=O\left(\begin{array}{l}\text { poly }(\log n, \log m)) \text {. } \\ \text { alsonthm observes the tokens in a }\end{array}\right.$
The algorithm observes the tokens in a single pars, i, ie. its main lop is allowed po:

- observe a_{i}
- do some upderie to internal state
- move on to a_{i+1}
... but cannot observe a_{i} resin after mong on.

Example: Finding frequent clements
In this example $s=O(k(\log n+\log m))$ for some small $k, \quad e_{g}, \quad k=O(1)$.
The algor⿹\zh26灬m outputs a set of $\leqslant k$ tokens including every token the at appears
more than $\frac{n}{k+1}$ times in the stream
MISRA-GRIES ALGORITHM
Iritidite $\left(b_{1}, \ldots, b_{k}\right)=(1,1, \ldots, 1)$

$$
\left(c_{1}, \ldots, c_{k}\right)=(0,0, \ldots, 0)
$$

// $\left\{b_{1}, \ldots ., b_{k}\right\}$ includes all tokens that have appeared more than $\frac{i}{k+1}$ times among a_{1}, \ldots, a_{i}
for $i=1, \ldots, n$:
observe a_{i}
if $a_{i n}=b_{j}$ for some $j \in[k]$

$$
\begin{equation*}
c_{j} \leftarrow c_{j}+1 \tag{I}
\end{equation*}
$$

else if $c_{j}=0$ for some $j \in[k]$

$$
\begin{align*}
& b_{j} \leftarrow a_{i} \\
& c_{j} \leftarrow 1 \tag{II}
\end{align*}
$$

else /l $a_{j} \notin\left\{b, \ldots, b_{k}\right\}, \quad c_{j}>0 \quad \forall j$
endfor $c_{j} \leftarrow c_{j-1}$ for all $j \in[k]$
output $\left\{b_{1}, \ldots, b_{k}\right\}$.

$$
k=2
$$

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}
ϕ	1	ϕ	2	1	ϕ	3	2	\varnothing
(0)	(0)	(0)	$0)$	(0)	0	(0)	0	0

Why correct?
Invariant: At all times, $\left\{b_{l}, \ldots, b_{k}\right\}$ includes every token with an unerosed red mark and
$c_{j}=$ \# if uneraced red marks on b_{j}.
To show correctors: argue it b is some token occurring $>\frac{n}{k+1}$ times in the strong, then there is at least one unerased red mark on a copy of b at the end of last loop iteration.
This is the because the \# fr red marks on b increases (by 1) each time b occurs in the stream, and decreases $(b y \leqslant 1)$ each time line (III) is executed.
The former event happens $>\frac{n}{k+1}$ times.
The later event happens $\leqslant \frac{n}{k+1}$ times.

Counting Distinct Elenents/Tokens
Given an,...., an how may distinct tokens dee it contemn?
If $s<m$ and $n>m$, no deterministic algorithm can succeed at this task for all possible inputs.
Consider the internal memory state offer processing a_{1}, \ldots, a_{n-1}.
Since memory is $5<\mathrm{cm}$ bits, and there are $2^{m}-1$ possible sets of dist, hat tokens occurring among $a_{1, \ldots}, a_{n-1}$

$$
2^{n}-1>2^{5} \xrightarrow{\text { pigeombile }} \exists \text { sets } S_{0}+S_{1}
$$

and streams a_{1}, \ldots, a_{n-1}

$$
a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}
$$

st. $S_{0}=\left\{\right.$ tokens occurring in $\left.a_{1}, \ldots, a_{n-1}\right\}$

$$
S_{1}=\left\{\text { tokens } \cdots a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}\right\}
$$

but moomory state of alg is the same aft seeing $a_{(}, \ldots, a_{n)}$ or $a_{(}^{\prime}, \cdots, a_{n-1}^{\prime}$.
There is some token $b \in S_{0}, b \notin S_{\text {, }}$ or $b \notin S_{0}, b \in S_{1}$.
If $a_{n}=a_{n}^{\prime}=b$, the algorithm is cetain to output uris answer on at one of a_{y}, \ldots, a_{n} or $a_{1}^{1}, \ldots a_{n}^{l}$.

Algorithin outputs the same answer on a_{1}, \ldots, a_{n} as a_{1}, \ldots, a_{n} !
but, by construction, the \# of distinct elements is different in the 2 cases.
conclusion. Streaming algs for courting distinct elements must be randomized and have some (maybe small) probability of failure.

