Input is a sequence of tokens

\(a_1, a_2, \ldots, a_n \)

Each token represented by \(b \) bits.

\(a_i \in \{0,1\}^b \)

Number of potential tokens is \(m = 2^b \).

Algorithm has storage space \(s \),
typically assumed \(s = O(\text{poly}(\log n, \log m)) \).

The algorithm observes the tokens in a single pass, i.e., its main loop is

- observe \(a_i \);
- do some update to internal state
- move on to \(a_{i+1} \)

... but cannot observe \(a_i \) again after moving on.

Example: Finding frequent elements

In this example \(s = O(k(\log n + \log m)) \)
for some small \(k \), e.g., \(k = O(1) \).

The algorithm outputs a set of \(k \) tokens including every token that appears
more than $\frac{n}{k+1}$ times in the stream.

MISRA-GRIES ALGORITHM

Initialize $(b_1, \ldots, b_k) = (\bot, \bot, \ldots, \bot)$

$(c_1, \ldots, c_k) = (0, 0, \ldots, 0)$

// $\{b_1, \ldots, b_k\}$ includes all tokens that have appeared more than $\frac{n}{k+1}$ times among a_1, \ldots, a_i

for $i = 1, \ldots, n$:

observe a_i

if $a_i = b_j$ for some $j \in [k]$

$c_j <\!\!< c_j + 1$ (I)

else if $c_j = 0$ for some $j \in [k]$

$b_j \leftarrow a_i$
$c_j \leftarrow 1$ (II)

else // $a_j \notin \{b_1, \ldots, b_k\}$, $c_j > 0$ for all $j \in [k]$

$c_j \leftarrow c_j - 1$ for all $j \in [k]$ (III)

endfor

output $\{b_1, \ldots, b_k\}$.
Why correct?

Invariant: At all times, \(\{ b_1, \ldots, b_k \} \)
includes every token with an unerased red mark and

\[c_j = \# \text{ of unerased red marks on } b_j. \]

To show correctness: argue if \(b \) is some token occurring \(> \frac{n}{k+1} \) times in the stream, then there is at least one unerased red mark on a copy of \(b \) at the end of last loop iteration.

This is true because the \# of red marks on \(b \) increases (by 1) each time \(b \) occurs in the stream, and decreases (by 1) each time line (III) is executed.

The former event happens \(> \frac{n}{k+1} \) times,

The latter event happens \(< \frac{n}{k+1} \) times.
Counting Distinct Elements/ Tokens

Given a_1, \ldots, a_n, how many distinct tokens does it contain?

If $s < m$ and $n > m$, no deterministic algorithm can succeed at this task for all possible inputs.

Consider the internal memory state after processing a_1, \ldots, a_{n-1}.

Since memory is $s < m$ bits, and there are $2^m - 1$ possible sets of distinct tokens occurring among a_1, \ldots, a_{n-1},

$$2^m - 1 > 2^s \implies \exists \text{sets } S_0, \ldots, S_r,$$

and streams a_1, \ldots, a_{n-1}

$$a'_1, \ldots, a'_{n-1}$$

s.t. S_0 = tokens occurring in a_1, \ldots, a_{n-1}

S_1 = tokens $\ldots, a'_1, \ldots, a'_{n-1}$

but memory state of alg is the same after seeing a_1, \ldots, a_{n-1} or a'_1, \ldots, a'_{n-1}.

There is some token $b \in S_0$, $b \notin S_1$

or $b \notin S_0$, $b \in S_1$.

If $a_n = a'_n = b$, the algorithm is certain to output wrong answer on at least one of a_1, \ldots, a_n or a'_1, \ldots, a'_n.
Algorithm outputs the same answer on
\(a_1, \ldots, a_n \) as \(a_1', \ldots, a_n' \)
but, by construction, the number of distinct elements is different in the 2 cases.

\underline{Conclusion}: Streaming algs for counting distinct elements must be randomized and have some (maybe small) probability of failure.