11 Apr 2022 Random Projections for Dimensionality Reduction

Announcements

1. Website updated with

- lecture videos from the week before spr BK.
- typeset notes from that week

2. Homework 5 updeded with solution strategy for Problem (Bc).
(Reminder: due Apr. 15)

Dimansiondity reduction

- Data set represented by n vectors in \mathbb{R}^{d}. Assume n, d both large, e.g. 10^{9}.
Assume $\|x-y\|_{2}$ is a meaningful measure of similarity of data points x, y.
Egg. \mathbb{R}^{d} in this example might be the output layer of a neural net that takes raw data and maps to in representation where L_{2} dist. is a meaningful similarity measure.

Task. Try to find a set of points

$$
x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime} \in \mathbb{R}^{k}
$$

where $k \ll n$, such that

Plan. We a random linear transformation $\mathbb{R} \rightarrow \mathbb{R}^{k}$ represented by a matrix $\&$ with independent, Gaussian entries haring distribution $\quad N\left(0, \frac{1}{k}\right)$.
It'川 tarn out that $k>4 \ln (n / \delta) / \varepsilon^{2}$ suffices, but well just keep calling dimension k for now.

To andyze $1 \quad R$ random matrix $k x d$ with entries $r_{i j} \sim N\left(0, \frac{1}{k}\right)$

$$
y=x_{i}-x_{j} \in \mathbb{R}^{d}
$$

Want to know if $\left\|R_{y}\right\|_{2}$ is likely close to $\|y\|_{2}$?
Step 1 Let $Y=\left\|R_{y}\right\|_{2}^{\alpha}$. What is $E Y$?

$$
\begin{gathered}
R=\left[\begin{array}{c}
-r_{i}^{\top}- \\
-r_{2}^{\top} \\
\vdots \\
r_{k}^{\top}
\end{array}\right] \quad R_{y}=\left[\begin{array}{c}
\left\langle r_{1}, y\right\rangle \\
\left\langle r_{2}, y\right\rangle \\
\vdots \\
\left\langle r_{k}, y\right\rangle
\end{array}\right] \\
Y=\left\|R_{y}\right\|_{2}^{2}=\sum_{i=1}^{k}\left\langle r_{i}, y\right\rangle^{2}=\sum_{i=1}^{k} X_{i}^{2} \quad\left(X_{i}=\left\langle r_{i}, y\right\rangle\right) .
\end{gathered}
$$

X_{1}, \ldots, X_{k} independent, identically distrib.

$$
\begin{aligned}
& X_{i} \sim N\left(0, \frac{1}{k}\|y\|_{2}^{2}\right) . \\
& \mathbb{E}\left[X_{i}^{2}\right]=\frac{1}{k}\|y\|_{2}^{2} \\
& \mathbb{E}[Y]=\sum_{i=1}^{k} \mathbb{E}\left[x_{i}^{2}\right]=k \cdot \frac{1}{k}\|y\|_{2}^{2}=\|y\|_{2}^{2} .
\end{aligned}
$$

Lemma 4.4 (Notes on Probability) tells us

$$
\begin{aligned}
\forall & 0<\varepsilon<1 \\
& \operatorname{Pr}\left(y<(1-\varepsilon)^{2} \mathbb{E} y\right)<e^{-\frac{k}{2} \varepsilon^{2}} \\
& \operatorname{Pr}\left(y>(l+\varepsilon)^{2} \mathbb{E} y\right)<e^{-\frac{k}{2} \varepsilon^{2}}
\end{aligned}
$$

We want $\left\|R\left(x_{i}-x_{j}\right)\right\|_{2}$ to be close to $\left\|x_{i}-x_{j}\right\|_{2}$ for $\binom{n}{2}$ diettuct pairs i, j.
The ardysis above with $y=\left\|R\left(x_{i}-x_{j}\right)\right\|_{2}^{2}$ says that the approximation for one single pair io can tail with probability $<2 e^{-\frac{1}{2} k \varepsilon^{2}}$.
Union Bound: Probability there is any pair i) with $\left\|R\left(x_{i}-x_{j}\right)\right\|_{2}$ lying outside interval $\left[(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2},(1+c)\left\|x-x_{j}\right\|_{2}\right]$ is leas than $\quad 2\binom{n}{2} e^{-\frac{1}{2} k e^{2}}$ Now make this leas than S...

Wont

$$
\begin{aligned}
& 2\binom{n}{2} e^{-\frac{1}{2} k \varepsilon^{2}}<\delta \\
& e^{-\frac{1}{2} k \varepsilon^{2}}<\frac{\delta}{n(n-1)} \\
& e^{\frac{1}{2} k \varepsilon^{2}}>\frac{n(n-1)}{\delta} \\
& \frac{1}{2} k \varepsilon^{2}>\ln \left(\frac{n(n-1)}{\delta}\right) \\
& k>2 \ln \left(\frac{n(n-1)}{\delta}\right) / \varepsilon^{2}
\end{aligned}
$$

This inequality will hold when $k>4 \ln \left(\left.\frac{n}{\delta} \right\rvert\, / \varepsilon^{2}\right.$.

To wee that $\ln (n) / \varepsilon^{2}$ dimensions are really needed, suppose x_{1}, \ldots, x_{n} are the standard basic vectors in \mathbb{R}^{n}. (so $\quad d=n$.)

