25 Mar 2022 Tail Bounds for Matrix Sums

Last time we consincted a set $C(d, \gamma)$ of $\leqslant\left(\frac{2 e}{\gamma}\right)^{d}$ unit vectors in \mathbb{R}^{d} such that $\left.\forall x \in \mathbb{R}^{d},\|x\|=1, \exists \omega \in C(d, \gamma)\langle\omega, x\rangle\right\rangle \mid-\gamma$.

Lemma. For every $x<\mathbb{R}^{d},\|x\|=1$, the vector $(1-\gamma) x$ is a convex comblatition of vectors in $C(2, \gamma)$.
Prof. Let $K=\{$ all ax lamb's of $C(d, \gamma)\}$.
If $(1-\gamma) x \notin K$ we will derive a contradiction.
Separating Hyperplane Principk says $\exists a \in \mathbb{R}^{d}, b \in \mathbb{R}$ st.

$$
\begin{aligned}
& \langle a,(1-\gamma) x\rangle=b \\
& \langle a, w\rangle<b \quad \forall w \in C(d, \gamma)
\end{aligned}
$$

By saving a, and scaling b accordingly wan assume $\|a\|=1$.

$$
\begin{aligned}
& \langle a,(1-\gamma\rangle x)=b \quad\left\langle a,(1-\gamma)_{x}\right\rangle=(1-\gamma)\langle a, x\rangle \leqslant 1-\gamma \\
& \forall w \in C(d, \gamma) \quad\langle a, w\rangle<b \quad \Longrightarrow>1-\gamma . \\
& \text { Real) } \left.\exists \omega_{0} \in C(d, \gamma) \quad\left\langle a, \omega_{s}\right\rangle\right\rangle 1-\gamma \text {. }
\end{aligned}
$$

Lemma (Fancy Union Bound Lemma)
Suppose P is a random symmetric positive semidef matron in $\mathbb{R}^{d \times Q}$ and let $Q=\mathbb{E}[P]$.
Suppose Q is pristine definite. Then $\forall 0<\beta<1$

Cor. Suppose= P and Q are as above, and suppose $\forall x \in \mathbb{R}^{d} \quad\|x\|=1, \quad \operatorname{Pr}\left(\begin{array}{c}\left\langle x, P_{x}\right\rangle \\ \left\langle x, \partial_{x}\right\rangle\end{array} \notin(1-\alpha, 1+\alpha)\right)$ $<e^{-K \alpha^{2} n}$
Then $\operatorname{Pr}\left(\exists x \in \mathbb{R}^{d} x \neq 0 \quad \frac{\left(x, p_{x}\right\rangle}{\left\langle x, Q_{x}\right\rangle} \notin\left(1-(1-\gamma)^{-2} \alpha, 1+(1-\gamma)^{-2} \alpha\right)\right)$

$$
<\exp \left(-k \alpha^{2} n+d \ln \left(\frac{\partial p}{\partial}\right)\right)
$$

Application to SVD analysis.
Reds: A is a den ratio with columns $\quad a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{d}$ drawn independently from $N\left(0, B B^{T}\right)$.

Singular rector \hat{v} is top cisenvect of $A A^{\top}$.

$$
V_{1} \text { is }-\cdots B B^{\top} \text {. }
$$

(Boon normalized so $\|\hat{v}\|=\left\|v_{1}\right\|=1$.)
Trying to prove $\left\langle\hat{v}, v_{1}\right\rangle \geqslant 1-\varepsilon$ w. prob. $\geqslant 1-\delta$ If n is large enough.

Apply lemme above with $P=\frac{1}{n} A A^{\top}, \quad Q=B B^{\top}$.

$$
\begin{aligned}
A A^{\top} & =\sum_{i=1}^{n} a_{i} a_{i}^{\top} \quad \text { each is equal to } B B^{\top} \\
\mathbb{E}\left(A A^{\top}\right] & =\sum_{i=1}^{n} \mathbb{E}^{\top}\left[a_{i} a_{i}^{\top}\right]^{L}=n B B^{\top} .
\end{aligned}
$$

For any $x \in \mathbb{R}^{d}$,
sum of indef, ident

$$
\begin{aligned}
\langle x, P x\rangle & =\sum_{i=1}^{n}\left(x, a_{i} a_{i}^{\top} x\right) \begin{array}{c}
\text { distrnb. Squares of } \\
\ell \\
\text { Gaussizins. }
\end{array} \\
& =\sum_{i=1}^{n}\left(x^{\top} a_{i}\right)\left(a_{i}^{\top} x\right)=\left(\sum_{i=1}^{n}\left\langle a_{i},\right\rangle^{2}\right)
\end{aligned}
$$

FACT. (To pe proven in typreset notes)
If X_{1}, \ldots, X_{n} are lid squares of mean-zero Gaussions

$$
\operatorname{Pr}\left(\frac{\sum_{i=1}^{n} X_{i}}{\mathbb{E} \sum_{i=1}^{n} x_{i}} \notin(|-\alpha,|+\alpha)\right)<\exp \left(-\frac{1}{6} \alpha^{2} n\right)
$$

Using Corollary above, we carchede

$$
\frac{\left.f \sqrt{\left(\exists x \in \mathbb{R}^{2} \quad \frac{\left\langle x p_{x}\right\rangle}{\left(x, Q_{x}\right\rangle} \notin\left(1-\frac{\alpha}{(1-\gamma)^{2}}, 1+\frac{\alpha}{(1, \gamma)^{2}}\right)\right.}\right)}{\sqrt{\exp \left(-\frac{1}{6} \alpha^{2} n+d \ln \left(\frac{2 e}{\gamma}\right)\right)}}
$$

chasse n
Choose α, γ sit. when this evert docsn't happen to make

$$
\left\langle\hat{v}, v_{1}\right\rangle \geqslant l-\varepsilon .
$$

