21 Mar 2022 SVD on i.i,d random vectors (continued)

We have random vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{\ell}$ sampled $i \therefore d_{\text {. }} \quad$ (indeperdenthy and identically distributed) from a distribution with covariance metric $\Sigma=R \overline{B^{\top}}$.
(on Fridoy we assumed Gaussian. In a different equally valid application, ins the unit dusting over colunims of a notirx with of sows and ${ }^{\text {over }}$ $N \gg n$ columns.)
\uparrow "downsamping" or "spersifying" a dataset, from N vectors down $t n$.

Given $\varepsilon, S>0$ we wat to understand how large must n be so that top night singuker vector v of A^{\top} is close to top right sirs vector of B^{\top}, v_{1}, in the suse that $\left\langle\hat{v}, v_{1}\right\rangle>l-\varepsilon$ viol prus. 1- δ.
\tilde{v} solves $\quad \max \left\|A^{\top} \hat{v}\right\|_{n}$ st, $\|\hat{v}\|_{2}=1$
v_{1} solus $\max \left\|\mathbb{E}\left(A^{\top}\right) v_{1}\right\|_{2}$ sit. $\left\|v_{1}\right\|_{2}=1$

Constructing a set of points in \mathbb{R}^{l}
that lie on a radius 1 sphere ard contain a valius $1-\gamma$ sphere in their convex bul.

$$
(\gamma \ll 1)
$$

A constructive that works: $k \triangleq\left[\frac{d}{2 \gamma}\right\rceil$. for set f indices $I=\left(i_{1}, \ldots, i_{d}\right)$ such that $i_{1}, \ldots, i_{d} \geqslant 0$

$$
i_{1}+\ldots+i_{d}=k
$$

and a set of signs $S=\left(5_{1}, \ldots, s_{d}\right) \in\{ \pm 1\}^{d}$ let

$$
\begin{aligned}
& w_{I, S}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
s_{1} \sqrt{i_{1}} \\
s_{2} \sqrt{i_{2}} \\
\vdots \\
s_{d} \sqrt{i_{d}}
\end{array}\right] . \\
& \left\|w_{5, S}\right\|_{2}^{2}=\frac{1}{k} \cdot \sum_{j=1}^{\&} i_{j}=1
\end{aligned}
$$

Coma: If $\|x\|_{2}=1, \exists$ I,S sit. $\left\langle\omega_{I, S}, x\right\rangle>1-\gamma$.
Proof. For $j=1, \ldots, d$ let $S_{j}= \begin{cases}+1 & \text { if } x_{j} \geqslant 0 \\ -1 & \text { if } x_{j}<0 \text {. }\end{cases}$
For $j=1, \ldots, d-1$ let $i_{j}=\left[k x_{j}^{2}\right]$.
Chose id st. $\bar{l}_{1}+\ldots+i_{d}=k$.
Do some calculations of rounding errors and conclude $\left\langle w_{j, 5}, x\right\rangle>1-\gamma$.

How many $w_{j, s}$ veetis are there?

* sign partershs, S, is 2^{d}.
* index vectors $\vec{i} \quad i_{1}+\ldots+i_{d}=k$

$$
\binom{d+k-1}{d-1}<\binom{2 k}{d}<\left(\frac{2 e k}{d}\right)^{d}
$$

In total_ we have $\left(\frac{\text { eek }}{d}\right)^{d}$ pairs IS.
Real $\frac{k}{d}=\frac{1}{2 \gamma}$, so $\left(\frac{2 \theta}{\gamma}\right)^{2}$.

