16 Mar 2022 Chernoff Bound Applications, Continued

A common pattern for using Chernff bound.

- Therese a finite \# of "bad events" we want to aroid Eg. in ERM analyst's, in bad event is

$$
\left|\frac{1}{N} \sum_{j=1}^{N} L\left(h_{i}, z_{j}\right)-\mathbb{E}\left[L\left(h_{i}, z\right)\right]\right|>\frac{\sum}{2}
$$

We have one such had vent for each

$$
i \in[m]
$$

- We want to show if N is large enough, with hist probability none of the bad events hopes.
- Game plan: Use Cherneff or Heeffeling to show $\operatorname{pr}($ bod event $+i)<1$ for each i.
Then use "union bound" to show

$$
\operatorname{Pr}\left(\exists_{i} \text { sit. had event } \# \text { 'i occurs) }<\delta\right. \text {. }
$$

Cion Bound: If X is a random variable and $\Psi_{1}, \Psi_{2}, \ldots, \psi_{m}$ are Boolean predicated $\psi_{i}(X)$
then

$$
\operatorname{Pr}\left(\bigvee_{i=1}^{m} \Psi_{i}(x)\right) \leqslant \sum_{i=1}^{m} \operatorname{Pr}\left(\Psi_{i}(x)\right)
$$

In plain English: the pubablity at Least one of $\Psi_{1}(x), \ldots, \psi_{m}(X)$ happens, is at moot the sum of the probabilities of $\Psi_{l}, \ldots, \Psi_{m}$.

Proof. Let $\phi_{i}(X)=\Psi_{i}(X) \wedge\left(\prod_{k=1}^{i-1} \overline{\psi_{k}(X)}\right)$
The predicates $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$ are mutually excluane and $\bigvee_{i=1}^{m} \phi_{i}=\bigvee_{V=1}^{m} \psi_{i}$.
Probability is finitely additive:

$$
\operatorname{Pr}\left(\sum_{i=1}^{m} \phi_{i}\right)=\sum_{i=1}^{m} \operatorname{Pr}\left(\phi_{i}\right)
$$

Also, $\operatorname{Pr}\left(\psi_{i}\right) \geqslant \operatorname{Pr}\left(\phi_{i}\right)$ because $\psi_{i}(x)=$ TRUE wherever $\phi:(X)=$ TRUG

Going back to ERM analysis we chose \# samples, N, large enough that we could show cuing theeffing, $\forall h_{i} \quad \operatorname{Pr}\left(\left\lfloor\left.\frac{1}{N} \sum_{j=1}^{N} L\left(h_{i}, Z_{j}\right)-\mathbb{E}\left[L\left(h_{i}, z\right)\right] \right\rvert\,>\frac{\varepsilon}{2}\right)<\frac{\delta}{m}\right.$

Union Bound:

$$
\operatorname{Pr}\left(\exists_{i}\left|\frac{1}{N} \sum_{j=1}^{N} L\left(h_{i}, z_{j}\right)-\mathbb{E}\left[L\left(h_{i}, z\right)\right]\right|>\frac{\varepsilon}{2}\right)<m \cdot \frac{\delta}{m}=\delta
$$

Cling Chenofl Bound in analysis $\%$ randomized algorithms.
Decision Problem: Problem that has $\{0,1\}$ answer.
(Equivalently a \{FALSE, TRUE\} ~ a n s w e r .) ~
P: Class of decision problems that have a deterministic, poly-thme algorithm that
always outputs correct answer. always outputs correct answer.

BPP: Decision patlems that have a randomized poly-time algorithm that always outputs a $\{0,1\}$ answer, and answers correctly with prob $\geqslant \frac{2}{3}$ on every possible infant.

Reducing corr putsability of BPP alsorionms.
Suppose we have algo. $A\left(x^{r}, r,\right)_{\text {rant }}^{\text {ipa bits }}$

$$
\text { s.t. } \forall x \quad \operatorname{Pr}(A(x, r) \text { is correct }) \geqslant 2 / 3 \text {. }
$$

Weld like to create algo $B(x, R)$ more random bits

$$
\text { sit. } \forall x \quad \operatorname{Pr}(B 6 x, R) \text { is correct }) \geqslant 1-\delta \text {. }
$$

$B(x, R)=$ partition tandem stating K

$$
\text { into } \quad r_{1}, r_{2}, \ldots, r_{m} \quad m=O\left(\log \left(\frac{1}{\delta}\right)\right)
$$

$$
R \underbrace{\sqrt{011} 01}_{r_{1}} \underbrace{0.00}_{r_{2}} \underbrace{(1,10011}_{r_{4}})
$$

$\operatorname{Run} \quad A\left(x, r_{1}\right), \quad A\left(x, r_{2}\right), \ldots, A\left(x, r_{m}\right)$.
Take majority vote: if $\sum_{i=1}^{m} A\left(x, r_{i}\right) \geqslant \frac{m}{2}$ output 1, else outport \varnothing.
$\forall x \quad \mathbb{E}[A(\in, r)] \geqslant 2 / 3$ if correct ans is 1 . $\mathbb{E}[A(\alpha, r)] \leq \frac{1}{3}$ iP correct ans. is \varnothing

Estimations $\mathbb{E}(A(x, r))$ within additive error $\frac{1}{6}$ implies $B(x, R)$ outputs correct answer.

To get $\varepsilon=\frac{1}{6}$ accuracy with prob $\geqslant 1-\delta$, need

$$
m \geqslant \frac{1}{2 \varepsilon^{2}} \ln \left(\frac{2}{\delta}\right)=18 \ln \left(\frac{2}{\delta}\right)
$$

Suppose input x has length n bits.
And suppose we wat $<2^{-n}$ puolabitty of error.

$$
\frac{2}{\delta}=2^{n+1}, \quad 18 \ln \left(\frac{2}{\delta}\right)=18(n+1) \ln (2)<14(n+1)
$$

We have shown when $m=14(n+1)$,
$B(x, R)$ runs in time $14 \cdot(n+1) \cdot \operatorname{rinE}(A(x, r))$. and $\forall x \in\{0,1\}^{n}$,

$$
\operatorname{Pr}(B(x, R) \text { is wrong or } x)<2^{-n} \text {. }
$$

Sum over $x \in\{0,1\}^{n}$

$$
\operatorname{Pr}\left(\exists x \in\{0,1\}^{n} \text { sit. } B(x, R) \text { is wrong on } x\right)<1 \text {. }
$$

$\therefore \exists$ a storing R_{n} such that $\forall x \in\{0,1\}^{n} \quad B\left(x, R_{n}\right)$ is correct.
$P /$ poly: decision parblems with a 2 -variable alsoithn $B(x, y)$ running in time poly $(|x|)$ sit. $\forall n \exists$ stang y_{n} st. $\forall x \not\left\{\left\{0, B^{n} \quad B\left(x, y_{n}\right)\right.\right.$ is correct.
$B P P \subseteq P /$ poly.

