9 Mar 2022 Gaussions II
The multivariate normal diotilution $N(0,1)$ satifices:
(1) If $X=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{1}\end{array}\right]$ is sanpled from $N(0,1 \mathbb{1})$ then $x_{1}, x_{2}, \ldots, x_{n}$ are indep. and each is $N(0,1)$.
(2) If Q is an $n \times n$ arthegonal matrix ard $X \sim N(0, \mathbb{1})$ then $Q X \sim N(0, \mathbb{1})$.

Ex. If X_{1}, X_{2} are indep $N(0,1)$, what's the distriation of $X_{1}+2 X_{2}$?
Hypothers: $x_{1}+2 x_{2}$ is $N(0,5)$.

$$
\begin{aligned}
\Leftrightarrow & \frac{1}{\sqrt{5}} x_{1}+\frac{2}{\sqrt{5}} x_{2} \text { is } N(0,1) . \\
& {\left[\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right]^{\prime \prime}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad Q=\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] \text { is orthog. } }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore Q\left[\begin{array}{l}
x_{1} \\
x_{L}
\end{array}\right] \text { is } N(0,1) \\
& \therefore\left[\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right\}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { is } N(0,1) \text {. } \\
& \therefore \quad\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { is } N(0,5) \text {. }
\end{aligned}
$$

inderendent and idesticaly bistiblated
Exid. If x_{1}, \ldots, x_{n} are iilid. $N(0,1)$ ru's

$$
\frac{1}{\sqrt{n}}\left(x_{1}+\cdots+x_{n}\right) \text { is also } N(0,1)
$$

because $\left[\begin{array}{llll}\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}}\end{array}\right]$ is the firat row of an arthogonal nen mothix.

For a rendem vector $X \in \mathbb{R}^{\mathcal{Q}}$

$$
\operatorname{Car}\left(x_{i}, x_{j}\right) \triangleq \mathbb{E}\left[x_{i} x_{j}\right]-\mathbb{E}\left[\begin{array}{c}
x_{i} \\
x_{2} \\
\dot{x}_{l}
\end{array}\right]\left[\mathbb{E}\left[x_{j}\right] .\right.
$$

For a vector $w=\left[\begin{array}{l}w_{1} \\ i_{d} \\ i_{d}\end{array}\right]$, The matrix $w W^{\top}$ has the (i, j) entry $w_{i} w_{j}$.

Def. The covariance matrix of X is

$$
\operatorname{Cov}(x) \triangleq \mathbb{E}\left[x x^{\top}\right]-(\mathbb{E} x)(\mathbb{E} x)^{\top}
$$

$\left(\begin{array}{lll}\text { IF } Y \text { is ri taking values in rect spe } V \\ \text { with } & \text { density } & f(y) . \\ & \mathbb{E}[Y]= & \int_{v} y f(y) d y\end{array}\right)$
Covariance of $M(0,1)$. If $x \sim N(0, \mathbb{1})$

$$
\mathbb{E}\left[x_{i} x_{j}\right]=\left\{\begin{array}{ccc}
1 & \text { if } & i=j \\
\mathbb{E}\left[x_{i}\right] \mathbb{E}\left[x_{j}\right] & \text { if } i \neq j
\end{array}\right.
$$

Now what it $X \in \mathbb{R}^{2}$ is distributed as $N(0, \mathbb{1})$ and $Y=B X+\mu$ for some invertible $d \times d \quad B$ and $\vec{\mu} \in \mathbb{R}^{d}$.

$$
\mathbb{E}[Y]=\mathbb{E}[B X]+\mu=\operatorname{BE}_{0}^{\text {linearity of expectation }}[X]+\mu=\mu
$$

$$
\begin{aligned}
\mathbb{E}\left[Y Y^{\top}\right] & =\mathbb{E}\left[(B X+\mu)\left(X^{\top} B^{\top}+\mu^{\top}\right)\right] \\
& =\mathbb{E}\left[B X X^{\top} B^{\top}\right)+\mathbb{E}\left[B X \mu^{\top}\right]+\mathbb{E}\left[\mu X^{\top} B^{\top}\right]+\mu \mu^{\top} \\
& =B \mathbb{E}\left[x x^{\top}\right]^{\mathbb{1}} B^{\top}+B \mathbb{E}[X]^{0} \mu^{\top}+\mu \mathbb{E}[X X]^{0} B^{\top}+\mu \mu^{\top} \\
& =B B^{\top}+\mu \mu^{\top} \\
\operatorname{Cov}(y) & =B B^{\top} .
\end{aligned}
$$

Conclusion: if $X \sim N(0, \mathbb{1})$ and $Y=B X^{\prime}+\mu$ then $Y \sim N\left(\mu, \beta B^{\top}\right)$.

Fact. If two Gavesian distributions have same mean and covariance, they are sequel!

Suppose $X \in \mathbb{R}^{d}$ is $N(0,1)$ and
$Y=A X$ where A is $d \times n$, rank d.
Elaimi Y has a Cravesian distribution
Port. Use SuD! $A=$ USU $^{\top}$,

$$
\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & 0 \\
0 & \sigma_{d}
\end{array}\right]
$$

$$
\begin{aligned}
& Y=U D\left[\begin{array}{ll}
\mathbb{1} & 0
\end{array}\right] V^{\top} X \\
& \sim U D[\mathbb{1} 0] X \quad \text { bk } \quad V^{\top} \text { is oringunal } \\
& X \text { is not-inut } \\
& \sim U D\left(X_{1: d} \sim N\left(0, \mathbb{1}_{d \alpha d}\right)\right. \\
& \sim B X_{1: d} \quad \text { where } B=U D \text { invertible }
\end{aligned}
$$

So y Gaussion $N\left(0, B R^{\top}\right)$

$$
{ }^{\|} N\left(0, U D^{2} U^{\top}\right)
$$

