7 Mar 2022 Gaussian distributions
If X is a rondel variable with continuous, sitritty increasing $C D F, F$, then ore way to sample from distils of X is to daw Y uniformly for $\left[0,1\right.$ and pt $X=F^{-1}(Y)$.
E.g. if X is inponctiol with rate r, ie.

$$
\operatorname{Pr}(x>t)=e^{-r t} \quad \forall t
$$

then $\quad x=F^{-1}(y)=\frac{1}{r} \ln \left(\frac{1}{1-y}\right)$.
The Normal Distribution $N(0,1)$.

Density is $f(x)=\frac{1}{Z} e^{-\frac{1}{2 x^{2}}}$ where Z is a normalizing constant to make $\int_{-\infty}^{\infty} F() d x=1$.
Bol news: the CDF $\quad F(x)=\int_{-\infty}^{x} f(y) d y$
has no closed form expression.
If (x, y) are independent $N(0,1)$ semples, their

$$
\begin{aligned}
& \text { density is } \quad f(x, y)=\frac{1}{z^{2}} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}[f(x) d t+0(d t)] \cdot[f(y) d t+0(d t)] \\
& =f(x) f(y) d t^{2}+o\left(d t^{2}\right) \\
& 1=\int_{-\theta-\infty}^{\infty} f(x, y) d x d y=\frac{1}{z^{2}} \iint e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y \\
& =
\end{aligned} \begin{aligned}
& \frac{1}{Z^{2}} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{1}{2} r^{2}} r d r d \theta \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \pi}{Z^{2}} \int_{0}^{\infty} e^{-u} d u \\
& =\frac{2 \pi}{Z^{2}} \Rightarrow z=\sqrt{2 \pi}
\end{aligned}
$$

$N(0,1)$ has density $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$.
If x, y are indep. $N(0,1)$ and $(X, Y)=(R, \theta)$ poor then Θ is uniform on $[0,2 \pi]$
R is distrib on $[0, \infty)$ with density $g(r)=r e^{-\frac{1}{2} r^{2}}$ and indef of Θ.
CDF of R is $G(r)=\int_{0}^{r} s e^{-\frac{1}{2} s^{2}} d s$

$$
\begin{aligned}
& u=\frac{1}{2} s^{2} \\
& d u=s d s
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{1}{2} r^{2}} e^{-u} d u \\
& =1-e^{-\frac{1}{2} r^{2}}
\end{aligned}
$$

Sample R by drauring Y from Unit $[0,1]$.

$$
R=\sqrt{2 \ln \left(\frac{1}{1-y}\right)}
$$

Procedure for sampling $N(0,1)$:

1. Draw $\Theta \sim \operatorname{unf}[0,2 \pi]$
2. Daw $Y \sim \operatorname{Cint}[0,1]$
3. $R=\sqrt{2 \ln \left(\frac{1}{1-y}\right)}$
4. Outprot $R \cos (\theta)$.

Observe $\operatorname{Pr}(R<\sigma)=1-e^{-\frac{1}{2 r} r^{2}}$

$$
\therefore \quad \operatorname{Pr}\left(R^{2}<t\right)=1-e^{-\frac{1}{2} t}
$$

$\therefore R^{2}$ is exponentially distrib with rate $\frac{1}{2}$.

$$
\therefore \quad E\left[R^{2}\right]=2 .
$$

Remember $R^{2}=X^{2}+Y^{2}$ and each of X, Y is $N(0,1)$.

$$
\therefore \quad \mathbb{E}\left[x^{2}\right]=1
$$

Since $\mathbb{E}[x]=0$, this means $\operatorname{Var}(x)=1$.
Why important?
Central Limit Theorem: If $X_{1}, X_{2}, X_{3}, \ldots$ is an infinite seq of identically dirinsatel Radom variables each with mean μ and variance $\sigma^{2}<\infty$, then

$$
\frac{\sqrt{n}}{\sigma} \cdot\left(\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}-\mu\right) \xrightarrow{d} N(0,1)
$$

If you averse 4 random numbers with mean μ you'll get something close to μ but it'll differ by about $\frac{r}{\sqrt{n}}$.
$r^{d x d}$ identity
The Multivenate Normal Distribution $N(0, \mathbb{1})$ is the distils of Q indes. $N(0,1)$ Random variables.
denstap $f\left(x_{1}, \ldots, x_{d}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{d} \cdot e^{-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{d}^{2}\right)} \underset{\text { depends only on }}{\text { in }}$

$$
\left\|\left(x_{1}, \ldots, x_{2}\right)\right\|_{2} .
$$

\therefore rotationally invariant.
If $X=\left(X_{1}, \ldots, X_{d}\right)$ is a sample from $N(0,11)$ and Q is orthogonal matron,
QX is abs listibuted according to $N(0, \mathbb{1})$.
These 2 properties:
(1) the coordinates of X are independent rand vars.
(2) notation invariant are important.
ILlUSTRATION: Say x_{1}, x_{2} are indep. $N(0,1)$. What is the distinct of $x_{1}+x_{2}$?
$Q=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$ is an orthogonal matrix
$Q\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ has $N(0,1)$ distribution.
Str. first coordinate is $\frac{1}{\sqrt{2}}\left(x_{1}+x_{2}\right)$.

$$
\frac{x_{1}+x_{2}}{\sqrt{2}} \text { is } N(0,1) \quad \text { distributed } \Rightarrow x_{1}+x_{2} \text { is } N(0,2)
$$

