[TMar 2022] Gaussian distributions If X is a rondom variable with continuous, strictly increasing CDT, F, then one way to sample from distribute of X is to draw Y uniformly from [0,T] and [0,T] and [0,T] and [0,T] and [0,T] is exponential with vote [0,T] and [0,T] i.e. [0,T] [0,T]

The Normal Dixtribution N(0,1).

Density is $f(x) = \frac{1}{Z} e^{-\frac{1}{2}x^2}$ where Z is a normalizing constant to make SFG dx = 1.

Bel news: the CDF F(x) = 5 f(y) dy has no closed form expression.

IF (X,Y) we independent N(0,1) simples, their density is $f(x,y) = \frac{1}{7^2} e^{-\frac{1}{2}(x^2+y^2)}$ [f(x) dt + o(dt)] [f(y) dt + o(dt)]

 $1 = \int \int f(x,y) dx dy = \frac{1}{2^2} \int \int e^{-\frac{1}{2}(k^2+y^2)} dx dy$

$$= \frac{1}{Z^2} \int_0^2 \int_0^2 e^{-\frac{1}{2}r} dr d\theta$$

 $= \frac{2\pi}{2^2} \int_0^\infty re^{-\frac{1}{2}r^2} dr$ Subst. $u = \frac{1}{2}r^2$ du = r dr

$$=\frac{2\pi}{2^2}\sum_{s=0}^{\infty}e^{-st}du$$

$$=\frac{2\pi}{2^2}\sum_{s=0}^{\infty}e^{-st}du$$

$$=\frac{2\pi}{2^2}\sum_{s=0}^{\infty}2=5\pi$$

$$N(0.1) \text{ how observe on } (0.1) \text{ and } (x,y)=(R,\theta) \text{ polar then }\Theta$$

$$=\frac{1}{\sqrt{2\pi}}\sum_{s=0}^{\infty}e^{-\frac{t}{2}x^2}$$

$$=\frac{1}{\sqrt{2\pi}}\sum_{s=0}^{\infty}e^{-\frac{$$

Observe
$$P(R-r) = 1 - e^{-\frac{r}{2}r^2}$$
 $P(R^2 < t) = 1 - e^{-\frac{r}{2}t}$
 $P(R^2 < t) = 1$
 $P(R^2 < t) = 1$

Why Important?

Certical Limit Theorem: If X, X2, X3, ... is an infinite see of identically distributed random variables each with mean
$$\mu$$
 and variance $G^2 < \infty$, then

 $\frac{\sqrt{n}}{\sigma} \cdot \left(\frac{X}{1} + \frac{X}{2} + \dots + \frac{X}{N} - \mu \right) = \frac{d}{1} \cdot \mathcal{N}(0,1)$

If you average 4 random numbers with mean μ upuill get something close to μ but μ about μ .

					e dxd	dxd identity is the distrib		
The Mul	tivente	Normal	Distinbuti	ò~ N(0, 3	1) 75	: the	distrib	
of Q	indep.	N(0,1)	random	variables	1			
0.1.	C+		, <u>L</u> /d	- 2 (x1 + x2	+4 ×	(1)		
density	F(x(,,	- (xa) =	(ITF) C	- \(\z\)	1	-		
					depen.	ds only o		
						,,×1) H		
					- r	obational invariant,	14	
JF X and	= (X,,.	Xa)	15 a	sample	for	. N(o):	11)	
and	a	is ortho	agonal n	value 2				
YX	is 4	Uso It	strbuted	accords,	3 10	10(9)	L).	
These 2	poper	ties:						
				X are	indepe	ndent	rend vas	
		b- m						
					10	2		
ILLUSTRATION WHEN	<u>00</u> :	say X	, X2	are Indep	N((-0, 1).		
What	is the	distri	b of	$\chi' + \chi'$				
	1 1/2	1						
Q=		- 1/2	is a	n orth	roganal	matin	X	
	(12	一定)						
Q[×1 h	as V	(0,1)	distribu	Hon.			
Ste. frs	t Cos	diste	is	= (X, +)				
1/2	is	N(0,1)	distab	utel =	Xi+K	is N(0,2).	