

FACT: It	s XX have	same dentity,	they have
same	alshbutton.		
Olas Not	every distrib	has a density,	
e.g.	X = 0 wr pro	has a density,	
			C
When X	has a de	usits, the de	resty tlyl
can be	defined as	9 (, , , , ,	5,
	f(y) = 11m	r(XeS)	
	diam(S)	Pr(X&S) Vold(S)	2 (2 ()
	9 -)	
For random	variable X	ER^{1} , the EDF) is F	cumulative
alstitutes	Function (CDF) is F	defined Ly
5	$F(\Theta) = Pr()$	$(\in (-\infty, \overline{\Theta}))$	
	= Pr (X		
11661 64	Li TE X	has a Continuo	ue OF, F,
		n variable F	
witor	my distribute	d in Co,J.	
Distribution	of V=F(X	CARTIE P	-(Yes)= Pr(FX)+s)
	/ (~)		
			AS'
	unit on Cost	J" means	
A	DEa < 5 < 1,	Pr (ZE [a,1	J) = b-a.

If F is the (continuous) OF of X and Y=F(X), then why is Y un If F is continuous and F(x) is unit [0,1] tren F is the CDF of X. => if y is unit [0,1] and F is continuous, strictly in creasing then X=F'(Y) has OF F. Ex- Exponential distribution with rate r
is characterized by $P(X>0) = e^{-r\theta}$ F(0) = 1-e-r0 F-1(y) = the & that solves 1-e-10 = 4 ひ= ナ ln(1-y).