23 Feb 2022 SVD interpretation
Pos Def matrices
Quit review

Phr 1
Phys 2
Plozer 3

Player 127

$$
\begin{aligned}
& \sigma_{1} \geqslant \sigma_{2} \geqslant \sigma_{3} \geqslant \sigma_{4} \geqslant \cdots \geqslant \sigma_{31} \geqslant 0 \ldots \geqslant 0 \\
& \text { singular value seq. } \\
& \text { SVSER } \\
& \text { PNEsuse ARzsusea } \\
& \text { "prentrally mizero" }
\end{aligned}
$$

A now of $V^{\top}(c o l$ of $V)$ is a vector in $\left(\mathbb{R}^{\text {Stat }}\right)^{*}$: a coefficient vector to combine stats by weighted summation to produce a "meta-statistic" that is better aligned with the late than any
single stat.

A row of M is one player's list of "met a-statistics".

A column of C focuses on some meta-otat and evaluates all player using that meta-stat,

Quiz review. List of topics is an Ed.

1. Vect Spec Fundaments
2. Inner products t Duals
3. Convexity
4. Norms
5. Differentials + Gradients
6. Volumes in $\mathbb{R}^{\mathbb{R}}$
7. Matrices.
E.9. The inner product $\left\langle\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right],\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right\rangle=x_{1} y_{1}+\frac{1}{2} x y_{1}+\frac{1}{2} x_{2} y_{1}$

$$
+x_{2} y_{2}
$$

is non-degenerate.

$$
\left[\begin{array}{c}
3 \\
-4
\end{array}\right] \longmapsto \lambda_{y} .\left\langle\left[\begin{array}{c}
3 \\
-4
\end{array}\right],\left[\begin{array}{l}
4 \\
y_{2}
\end{array}\right]\right\rangle
$$

So it defines an isomorphism $\mathbb{R}^{2} \rightarrow\left(\mathbb{R}^{2}\right)^{*}$. Wite the row vector in $\left(\mathbb{R}^{2}\right)^{*}$ corresponding To $\left[\begin{array}{l}3 \\ -4\end{array}\right]$ under this iso.

$$
3 y_{1}+\frac{3}{2} y_{2}-2 y_{1}-4 y_{2}=y_{1}-\frac{5}{2} y_{2} \quad\left[1-\frac{5}{2}\right]
$$

E.8. For each of these functions, is it convex?

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2} \\
& g(x, y)=x^{2}-y \\
& h(x, y)=(x-y)^{2}
\end{aligned}
$$

Egg. Which of the following is true?

$$
\begin{aligned}
& \lim _{d \rightarrow \infty} d^{\frac{1}{2}} \cdot\left(\operatorname{vol}_{d}\left(B_{2}^{d}(1)\right)\right)^{\frac{1}{d}} \text { is finite } \\
& \lim _{d \rightarrow \infty} d^{-1 / 2}\left(\operatorname{vol}_{d}\left(B_{2}^{d}(1)\right)\right)^{\frac{1}{d}} \text { is }>0 \\
& \text { both }
\end{aligned}
$$

neither
fact. $\operatorname{vold}\left(B_{2}^{d}(1)\right) \propto\left(\frac{c}{\sqrt{d}}\right)^{d}$

$$
v_{0} l_{d}\left(B_{2}^{d}(1)\right)^{\frac{1}{d}} \sim \frac{c}{\sqrt{d}}
$$

