21 Feb 2022 Finishing SVD
For any marina $A \in \mathbb{R}^{m \times n}$ we found there are vectors $v_{1}, v_{2}, \ldots, v_{n}$ such that:
(1) The matron $B=A^{\top} A$ is a symmetric $n * n$ motion with eigenvectors v_{1}, \ldots, v_{n} sorted by decreasing eigenvalue.
(2) For $1 \leq k \leq n$ the column space of the matrix $V_{k}=\left[\begin{array}{cccc}1 & 1 & \cdots & 1 \\ v_{1} & v_{2} & -v_{k} \\ 1 & 1 & \cdots & 1\end{array}\right]$ is the best k-dimensional linear subspace of \mathbb{R}^{n} approximating the rows of A.

If \hat{A} is a matrix whose rows being to

- k-dimensional linear subspace of \mathbb{R}^{n},

$$
\Longleftrightarrow \quad \operatorname{rank}(\hat{A})=k .
$$

In particular, if \hat{a}_{i}^{\top} denotes projection of a_{i}^{\top} onto the bect-fit k-dimensional subspace, and lat

$$
\hat{A}_{H}=\left[\begin{array}{c}
-\hat{a}_{1}^{\top} \\
-\hat{a}_{2}^{\top} \\
\vdots \\
\hat{a}_{m}^{\top}
\end{array}\right]
$$

then the $\sum_{i=1}^{m}\left\|a_{i}-\hat{a}_{i}\right\|^{2}$ objective can be written as

$$
\left\|A-\hat{A}_{k}\right\|_{F}^{2}
$$

So the \hat{A}_{k} matrix defined above, whose now s belong to span of $v_{1}^{\top}, \ldots, v_{k}^{\top}$, is the rank- k matrix- the minimizes
$V A-\left.\hat{A}_{k}\right|_{\vec{F}} ^{2}$ The coafrieets that express
Suppose $V_{i} \hat{a}_{i}^{\top}=\sum \widetilde{u_{i j}} v_{j}^{\top}$ \hat{a}_{i} as \sim linear

Then

$$
\hat{A}_{k}=\widetilde{U} v_{k}^{\top} \quad \tilde{U}=\left[\tilde{u}_{i j}\right]
$$

WA te
(i.e. rescale each column of \widetilde{u} to have length 1.)

$$
\hat{A}_{k}=U_{k} D_{k} V_{k}^{\top}
$$

Let $k=n . \quad \hat{A}_{n}=A$,

$$
\begin{aligned}
A & =U_{n} D_{n} V_{n}^{\top} \\
& =U D V^{\top}
\end{aligned}
$$

Columns of U_{i} left singular vectors
Ding entities of D : singular values singular value decor. of A $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{n} \geqslant 0 \quad \sigma_{1}^{2}, \ldots, \sigma_{2}^{2}$ or digress

Columns of V. right singular vectors.
The equation

$$
A=U D V^{T}
$$

means

We derived that best ranker approx to A is Frobenius norm is

$$
\hat{A}_{\sigma}=\sum_{k=1}^{r} \sigma_{k} u_{k} v_{k}^{\top}
$$

Best ranker spores to A^{\top} is $\sum_{k=1}^{r} \sigma_{k} v_{k} u_{k}^{\top}$

To find eigenvectors of $B=A^{\top} A$, de "power iteration": stat with random vector v, compute $B^{k} v$ for some large k, it will be nearly parallel to v_{1}.

If $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$

$$
\begin{aligned}
B^{k} v & =c_{1}\left(B^{k} v_{1}\right)+\ldots+c_{n}\left(B^{k} v_{n}\right) \\
& =c_{1} \sigma_{1}^{2 k} v_{1}+c_{2} \sigma_{2}^{2 k} v_{2}+\cdots+c_{n} \sigma_{n}^{2 k} v_{n}
\end{aligned}
$$

