16 Feb 2022 Singular Value Decomposition
Think of data points $a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{n}$.
Organize them as nous of a matrix

$$
A=\left[\begin{array}{c}
{\left[a_{1}^{\top} \sim\right.} \\
a_{2}^{\top} \\
\vdots \\
a_{m}^{\top}
\end{array}\right] \quad A \in \mathbb{R}^{m \times n}
$$

Plot rows of A as a "point cloud" in \mathbb{R}^{n} :

Q: Is there a line through \vec{O} that is fairy chase to al points?

Look for a unit vector \vec{v} st.

$$
\|\vec{v}\|_{2}=1
$$

This defines a. line

$$
L=\{\alpha \cdot \vec{v} \mid \alpha \in \mathbb{R}\} .
$$

Try to find a point $\alpha_{i} \cdot v$ on L aldose to each data pt a_{i}, Measure goodness of fit by $\sum_{i=1}^{m}\left\|a_{i}-\alpha V\right\|^{2}$.
Pythagoras: $\quad \forall i \quad\left\|a_{i}\right\|_{2}^{2}=\left\|\alpha_{i} v\right\|_{2}^{2}+\left\|a_{i}-\alpha_{i} v\right\|_{2}^{2}$

Solve loss viminization by maximizing $\sum_{i=1}^{m} \alpha_{i}$.
$\alpha_{i}=$ length of projection $f \quad a_{i}$ on the line determined by unit vector \vec{v}.

$$
\begin{aligned}
& =\left\|a_{i}\right\|_{2} \cdot \cos \theta \\
& =\left\|a_{i}\right\|_{2}\|v\|_{2} \cos \theta \\
& =\left\langle a_{i}, v\right\rangle .
\end{aligned}
$$

Least squares problem is reduced to finding \vec{v} sit. $\|v\|_{2}=1$, maximising $\sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$,

$$
\left\|A_{v}\right\|_{2}^{2}
$$

Approximating point cloud with a k-dimensionnal linear subspace?

Could try following same pan: choosing k linearly independent unit vectors v_{L}, \ldots, v_{k}

Approximate each point a_{i} with $\alpha_{i 1} v_{1}+\alpha_{i 2} v_{2}+\cdots \alpha_{i k} v_{k}$.

$$
\text { Minimize } \sum_{i=1}^{m}\left\|a_{i}-\left(\alpha_{i l} v_{1}+\ldots+\alpha_{i k} v_{k}\right)\right\|_{2}^{2} \text {. }
$$

This is again equivalent to maximizing

$$
\sum_{i=1}^{m}\left\|\alpha_{i 1} v_{i}+\cdots+\alpha_{i k} v_{k}\right\|_{2}^{2}
$$

If v_{1}, \ldots, v_{k} are orthonormal meaning

$$
\left\|v_{i}\right\|_{2}^{2}=1 \text { } \forall i \text { and }\left\langle v_{i}, v_{j}\right\rangle=0 \text { for } i^{\prime} \neq j
$$

then $\quad \alpha_{i j}=\left\langle a_{i}, v_{j}\right\rangle$ and were minimizing

$$
\sum_{i=1}^{m} \sum_{j=1}^{k}\left\langle a_{i}, v_{j}\right\rangle^{2}
$$

Given A, find an orthonormal set of vectors
$v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ to maximize $\sum_{i=1}^{k} \sum_{j=1}^{k}\left\langle a_{i}, v_{j}\right\rangle^{2}$.

$$
\begin{aligned}
V=\left[\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & v_{2} & v_{k} \\
1 & 1 & \\
1
\end{array}\right] \quad & \|A V\|_{F}^{2} \\
& \|M\|_{F} \triangleq\left(\sum_{i, j} m_{i j}^{2}\right)^{1 / 2}
\end{aligned}
$$

There of today + Friday...
The greedy algorithm solves this problem!
Meaning: the optimal v_{v}, \ldots, v_{k} can be found by solving

1. $\quad v_{1} \in$ arg $\max \left\{\left\|A_{v}\right\|_{2}^{2} \mid\|v\|_{2}=1\right\}$
2. $\left.v_{2} \in a_{3} \max \left\{\|A v\|_{2}^{2}\right\}\|v\|_{2}=1,\left\langle v_{1, v}\right\rangle=0\right\}$

$$
\text { k. } v_{k} \in \text { ars mar }\left\{\left\|A_{v}\right\|_{2}^{2} \mid\|v\|_{2}=1,\left\langle v_{i}, v\right\rangle=0 \quad \forall i<k\right\}
$$

