14 Feb 2022 Change of basis formulae, starting SVD

Recall course enrollment example:

$$
M=\begin{array}{cccc}
\# \text { grad } & \text { course } & 50 & 1 \\
\# \text { grad } & 20 & M^{\prime}=\text { total } \# \text { stu } & 70 \\
& & \text { grad } & 20
\end{array}
$$

Change of basis matrix $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] . \quad M^{\prime}=B M$
But if a linear function has coefficient vector $\left[\begin{array}{ll}2 & 1\end{array}\right]$ in first basis, its coefficient vector in the second one is $\left[\begin{array}{ll}2 & -1\end{array}\right]$.

Def. A based vector space is V with isomorphism $\mathbb{R}^{n} \xrightarrow{\beta} V$. Charting a based vas. strict on V lets us write elements of V as n-tuples of numbers

$$
(v) \quad \beta^{-1}(v) .
$$

Example. $V=$ vector space of course enrollments.
$\beta_{1}: \mathbb{R}^{2} V$ basis close for table M. $\beta\binom{1}{0}=$ a vector of course enrolls that would La rep'd in M by colum vector ($\binom{1}{0}$.
$=a$ course with 1 ugral, ϕ gad $\triangleq \vec{\omega}$.

$$
\beta_{1}\binom{i}{i} \stackrel{\Delta}{g}=\text { course with } 1 \text { grad, } \phi \text { ugrad }
$$

$\beta_{2}: \mathbb{R}^{2} \rightarrow V$ basis choice for table M^{\prime}
$\beta_{2}\binom{1}{0}=$ enrollment represented in M^{\prime} by (b) i.e. 1 total student,

$$
=\vec{u}
$$

$\beta_{2}\binom{0}{1}=$ enroll reid in M^{\prime} by $\binom{0}{1}$ ie.
\varnothing total students, 1 of Mom is grad.

$$
=\vec{g}-\vec{e}
$$

Def. Charge if basis motion from β_{1} to β_{2} is the matrix representing the linear transformation

$$
\begin{array}{rlr}
\mathbb{R}^{n} \xrightarrow{\beta_{1}} V \xrightarrow{\beta_{2}^{-1}} \mathbb{R}^{n} \quad \beta_{2}^{-1} \circ \beta_{1} \\
\begin{aligned}
\beta_{2}^{-1}\left(\beta_{1}\left(\overrightarrow{e_{1}}\right)\right) & =\beta_{2}^{-1}(\vec{u})=\binom{1}{0} \\
\beta_{2}^{-1}\left(\beta_{1}\left(\overrightarrow{e_{2}}\right)\right) & =\beta_{2}^{-1}(\vec{g}) \quad \\
& =\beta_{2}^{-1}(\vec{u}+\vec{s}-\vec{u})=\binom{1}{1}
\end{aligned}
\end{array}
$$

What does changenof-basis do to the matrix representing a linear transformation, $T: V \rightarrow W$?

To say thad m_{l} represents T in the boxes $\beta_{v 1}, \beta_{w 1}$ menus that $\forall x \in \mathbb{R}^{n}$

$$
T\left(\beta_{v}(x)\right)=\beta_{w}\left(M_{1 x}\right)
$$

with $x=\beta_{v 1}^{-1}(v)$ this says

$$
T(v)=\beta_{w_{1}}\left(M_{1}\left(\beta_{v_{1}}^{-1}(v)\right)\right)
$$

If M_{2} repreeorts T in bases $\beta_{v 2}, \beta_{w 2}$ then

$$
\forall v \quad T(v)=\beta_{w 2}\left(m_{2}\left(\beta_{v_{2}}^{-1}(v)\right)\right)
$$

$$
\forall v \quad \beta_{w_{2}}\left(M_{2}\left(\beta_{v_{2}}^{-1}(v)\right)\right)=\beta_{w_{1}}\left(M_{2}\left(\beta_{v_{1}}^{-1}(v)\right)\right)
$$

$\left(\right.$ set $\left.x-\beta_{v 2}^{-1}(v)\right)$

$$
B_{v}=\beta_{21}^{-1} \beta_{u}
$$

$\forall x \quad \beta_{w 2}\left(m_{2}(x)\right)=\beta_{w l}\left(m_{1}\left(\beta_{v 1}^{-1} \beta_{v 2}(x)\right)\right)$ $\phi_{w}=\beta_{w_{2}}^{-1} \beta_{w}$

$$
\begin{aligned}
M_{2}(x) & =\beta_{w 2}^{-1} \beta_{w 1} M_{1} \beta_{v 1}^{-1} \beta_{v_{2}} x \\
& =\left(\beta_{w} M_{1} B_{v}^{-1}\right)_{x} \\
M_{2} & =\beta_{w} M_{1} B_{v}^{-1}
\end{aligned}
$$

