11 Feb 2022 Matrices and change of basis
Amouncements
(1) Prof K extric offize $h r$ tiday 2:30-3:30 Gates 317.
(2) Instant Access will change you fir textbook unkess you ont out Ly Mon.

Matrices: two-dimensinal arrays of reals

$$
\left.M=\left(M_{i j}\right) \quad \begin{array}{ll}
1 \leqslant i \leq m & (\text { rows }) \\
& 1 \leqslant j \leqslant n
\end{array} \quad \begin{array}{l}
\text { (cols) }
\end{array}\right)
$$

1. Can repreat tabular data.
E.g. \#ugrad

$$
\operatorname{cs} 4110 \ldots . \operatorname{cs} 4850 \ldots
$$

* grad

2. Can represent linear transformations $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ represented by M if $\forall x \quad T(x)=$ the vector $y \in \mathbb{R}^{m}$ with $y_{i}=\sum_{j=1}^{n} M_{i j} x_{j}$
3. Can represent bilinear functions

$$
A: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

is bilinear of $A(a x+b y, z)$

$$
=a A(x, z)+b A(y, z)
$$

and $A(x, a y+b z)$ similarly.
M represents A if

$$
\begin{aligned}
& \forall x \forall y \quad A(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i j} x_{i} y_{j} \\
& A(x, y)=\left\langle x, M_{y}\right\rangle \\
& =\left\langle M^{\top} x, y\right\rangle=x^{\top} M_{y} \\
& x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \\
& x^{\top} M_{y}=\left[\begin{array}{lll}
x_{1} & \cdots & x_{m}
\end{array}\right]\left[M_{i j}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \\
& =\left[x_{1} \cdots x_{m}\right]\left[\begin{array}{c}
M_{11} y_{1}+M_{12} y_{2}+\ldots+M_{1 m} y_{n} \\
\vdots \\
M_{m 1} y_{1}+\ldots \\
M_{m n} y_{n}
\end{array}\right]
\end{aligned}
$$

$\{$ Polynomids of degnce $\leqslant d\}$

$$
=\left\{\text { functions } P(t)=a_{0}+a_{1} t+\cdots+a_{d} t^{d}\right\}
$$

form a vector space of dimenson $d+1$.
Call theis vect space Polyd.
Hord's a bilineer function Poly $\times \mathrm{Pol}_{\mathrm{n}} \rightarrow \mathbb{R}$ whrch is meaningfal even if $m \neq n$

$$
\begin{aligned}
A(P, Q) & =\int_{-1}^{1} P(t) Q(t) d t \\
A\left(a_{0}^{P}+b P_{1}, Q\right) & =\int_{-1}^{1}\left(a P_{0}(t)+b P_{1}(t)\right) Q(t) d t \\
& =a \int_{-1}^{1} P_{0}(t) Q(t) d t+b \int_{-1}^{1} P_{1}(t) Q(t) d t \\
& =a A\left(P_{a}, Q\right)+b A\left(P_{1}, Q\right) .
\end{aligned}
$$

Sometimes we want to write a matrix representing＂the same Thing＂as M using a different basis．
Doing this can be cifusting because the way to rewrite M depends on what＂thing＂we＇re untrs it to represent．

Example：we can wite course enrollments ir a table as
＊ugrad
＊grad
or ar
CSIIIO $\quad-\quad-C 54850$
total \＃students
\＃grads
If M denotes a matrix representing the first table of data，then $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot M$ represents same data in the 2^{n} 㢈 former format，

N-u suppose the university pays the CS dept \$d for every ugrod we teach $\$ 1$ for every grad.
If I represent enrollment as $\left[\begin{array}{ll}x & \text { ugrads } \\ y & g r a d s\end{array}\right]$ revenue to $C S$ is

$$
\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

But if I represent it as $\left[\begin{array}{cc}t & \text { tit students } \\ g & \text { grads }\end{array}\right]$ then revenue to $C S$ is

$$
\left[\begin{array}{ll}
2 & -1
\end{array}\right]\left[\begin{array}{l}
t \\
g
\end{array}\right]
$$

Def. (this class... not a widely used term) A based vector space is a vect pe V and an isomorphism $\mathbb{R}^{n} \xrightarrow{\beta} V$ for some $n \in \mathbb{N}$.
Giving vector space V the strict of a based vector space is equiv. to choosing an ordered nuttple of vectors
thad form a basis of V.
Two different chicer correspond to different bases, and there is a linear function

$$
\beta_{2}^{-1} \circ \beta_{1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}
$$

represented by a

charge of baits matte, B.
Ex. $V=\{$ enrollment $\}$.

$$
\begin{array}{ll}
\beta_{1}: \mathbb{R}^{n} \rightarrow \vee & {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mapsto\{\text { grad }\}} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mapsto\{\text { grad }\}} \\
\beta_{2}: \mathbb{R}^{n} \rightarrow V & \\
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mapsto v_{1}} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mapsto v_{2}}
\end{array}
$$

such that 1 ugrad is represated by $1 \cdot v_{1}+\varnothing \cdot v_{2}$ and 1 grab is rapid by $1 \cdot v_{1}+1 \cdot v_{2}$

$$
\begin{aligned}
\therefore \quad & \text { ugrad }=v_{1} \\
& \text { grad }=v_{1}+v_{2} \\
& v_{1}=\{\text { ugrad! } \\
& v_{2}=\{\text { grad-ugrad }\} .
\end{aligned}
$$

