Let x, y be indus random samples from $B^{d}=\left\{x \in \mathbb{R}^{d} \mid \quad\|x\|_{2} \leqslant 1\right\}$.
We seek to calcite bound from above $\operatorname{Pr}($ angle $b t$. $x \& y) \notin\left(\frac{\pi}{2}-\varepsilon, \frac{\pi}{2}+\varepsilon\right)$ As you may know, if vectors x, y form angle θ, then

$$
\langle\langle x, y\rangle=\|x\|\|y\| \cos (\theta)
$$

$$
\theta \&\left(\frac{\pi}{2}-\varepsilon, \frac{\pi}{2}+\varepsilon\right) \Longrightarrow|\cos (\theta)|>\sin (\varepsilon)>\varepsilon-\frac{1}{3} \varepsilon^{3}-
$$

Assume cloG y is $\overrightarrow{e_{1}} . \quad\langle x, y\rangle=x_{1}$.

$$
\begin{aligned}
& \operatorname{Pr}(\text { angle bx } x \& y) \notin\left(\frac{\pi}{2}-\varepsilon, \frac{\pi}{2}+\varepsilon\right) \\
& \leqslant \operatorname{Pr}\left(\left|x_{1}\right|>\|x\|\left(\varepsilon-\frac{1}{3} \varepsilon^{3}\right)\right)
\end{aligned}
$$

Two ways the event $|x|>,\|x\|\left(\varepsilon-\frac{1}{j} \epsilon^{3}\right)$ could happen.
(1) $\|x\|<1-\varepsilon \leftarrow$ Probability $<e^{-\varepsilon d}$

$$
\begin{aligned}
\text { (2) }\left|x_{1}\right| & >(1-\varepsilon)\left(\varepsilon-\frac{1}{3} \varepsilon^{3}\right) \\
& =\varepsilon-\varepsilon^{2}-\frac{1}{3} \varepsilon^{3}+\frac{1}{3} \varepsilon^{4} \\
> & \frac{1}{2} \varepsilon \quad \text { for } \quad \text { small } \varepsilon \text {, }
\end{aligned}
$$

Wite $\quad \frac{1}{2} \varepsilon$ as $\sqrt{\frac{c}{d}}$ i.e. $c=\frac{\varepsilon^{2} d}{4}$ and then $\operatorname{Pr}\left(\left|x_{1}\right|>\sqrt{\frac{c}{d}}\right)<\sqrt{\frac{e}{c}} e^{-c / 2}$

$$
=\sqrt{\frac{4 e}{d}} \cdot \varepsilon \cdot e^{-\frac{1}{q} \varepsilon^{2} d}
$$

Wove reached the point of knowing

$$
\begin{gathered}
\operatorname{Pr}\left(\text { angle } x y \notin\left(\frac{\pi}{2} \cdot \varepsilon, \frac{\pi}{2}+\varepsilon\right)\right) \\
<e^{-\varepsilon d}+\sqrt{\frac{4 e}{d}} \varepsilon e^{-\frac{1}{d} \varepsilon^{2} d} \\
<2 e^{-\frac{1}{\delta} \varepsilon^{2} d}
\end{gathered}
$$

Suppose we sample vectors $x_{1}, x_{2}, \ldots, x_{m} \in B^{d}$ all indep, uniformly randan.

What is expected \# of pairs x_{i}, x_{j} that form angle nat in upper al ad on

$$
\left(-\frac{\pi}{2}-\varepsilon, \frac{\pi}{2}+\varepsilon\right) ?
$$

Answer: \exp. value $\leqslant \frac{m(m-1)}{2}\left(2 \cdot e^{-\frac{1}{8} \varepsilon^{2} d}\right)$
Sf exp. val $\ll 1$, then with high prob no 2 vectors among
$\left\{x_{1}, \ldots, x_{m}\right\}$ form an angle that differs from $\frac{\pi}{2}$ by $>\varepsilon$.
le. if $\quad m^{2} \ll e^{\frac{1}{8} \varepsilon^{2} d}$
ie. $\quad m \ll e^{\frac{1}{16} t^{2} d}$
then this hoppers with high probability.

Matrices

