4 Feb 2022 Geometry of High Dimensional Space
Distance in a vector space is measured by norms.
Def. A norm on vector space V is a function
$\|\cdot\|: V \mathbb{R}$ satisfying
(i) $[$ non-negativity $] \quad\|x\| \geqslant 0 \quad \forall x$ with equality only when $x=0$
(ii) $[$ linear homogneity $]\|a x\|=|a| \cdot\|x\|$

$$
\forall x \in V, \quad \forall a \in \mathbb{R}
$$

(iii) [subaddtrivity] $\|x+y\| \leqslant\|x\|+\|y\|$

When these 3 properties are satisfied, then doffing $d(x, y)=\|x-y\|$ satisfies symmetry and triangle inequality.
The unit ball of a norm is $B=\{x \mid\|x\| \leq 1\}$. Check this is a convex set and it is centrally symmetric meaning $x \in B \Leftrightarrow-x \in B$
Conversely if K is a convex cent symm set containing 0 in its (topological) interior

Then there is a nom whose unit ball is K.

On \mathbb{R}^{n} there is a family of norms

$$
\|x\|_{\rho}=\left\{\begin{array}{lll}
\left(\left.\sum_{i=1}^{n}\left|x_{i}\right|\right|^{p}\right)^{1 / p} & \text { if } & 1 \leq \rho<\infty \\
\max _{1 \leqslant i \leqslant n}\left|x_{i}\right| & \text { if } & \rho=\infty
\end{array}\right.
$$

These satisfy: $\|x\|_{p}$ is a non-increasing function of ρ as ρ varies 1 to ∞.

$$
\begin{array}{r}
B_{1} \subset-C B_{p} \subset \cdots C B_{\infty} \\
\dot{q}^{\text {unit ball of }\|\cdot\|_{p}}
\end{array}
$$

H- $\|_{2}$ is called Euclidean distance and cancesponds to using Pythagorean Theorem to measure distance.
L_{ρ} denotes \mathbb{R}^{n} with the form.

Volumes in \& dimensions
Simple facts about volumes.
(1) Additivity; If you dissect a shape into pieces with disjoint interiors, its volume is the sum of their volumes. * (assuming pieces are "nicely shaped")
(2) Sealing: $\operatorname{vol}_{d}(\lambda \cdot s)=\lambda^{d} \cdot \operatorname{vol}_{d}(S)$ if $S \subset \mathbb{R}^{d}$ and $\lambda>0$.
Here

$$
\lambda S=\{\lambda \cdot x \mid x \in S\}
$$

(3) Volume of cone with base B and height h is

$$
\begin{aligned}
& =\frac{h}{d} \operatorname{vol}_{d-1}(\beta)
\end{aligned}
$$

Applying these:
Obs 1. Almost all the volume of a d-dimenstinal Euclidean ball is near the surface!
Let $B=B_{2}^{d}(1)=\left\{x \in \mathbb{R}^{d} \mid\|x\|_{2} \leqslant 1\right\}$.
Let $S=\left\{x \in B \left\lvert\,\|x\|_{2} \geq 1-\frac{c}{d}\right.\right\}$
for some $c>0$.
Then $\operatorname{vol}(B \backslash S)<e^{-c} \cdot \operatorname{vol}(B)$.

$$
1-x \leq e^{-x}
$$

front.

$$
\begin{aligned}
B \backslash S & =B_{2}^{2}\left(1-\frac{c}{d}\right) \\
\operatorname{vol}_{d}(B \backslash S) & =\left(1-\frac{c}{d}\right)^{d} \cdot v_{d}(B) \\
& <\left(e^{-c / d}\right)^{d} \cdot \operatorname{vol}_{d}(B) \\
& =e^{-c} \cdot \operatorname{vol}_{d}(B) .
\end{aligned}
$$

strict inca.

$$
\text { if } x \neq 0 \text {. }
$$

For example when $c=5 \quad e^{-c}<0.01$, So 99% of the ball's volume is within distance $5 / 2$ of the boundary.

Os 2. $B_{\infty}^{d}\left(\frac{1}{\sqrt{d}}\right) \subset B_{2}^{d}(1) \subset B_{1}^{d}(\sqrt{d})$.

Proof. If $x \in B_{\infty}^{d}\left(\frac{1}{\sqrt{d}}\right)$ then $\left|x_{i}\right| \leq \frac{1}{\sqrt{d}}$

$$
\sum_{i=1}^{d} x_{i}^{2} \leqslant \sum_{i=1}^{d} \frac{1}{d} \leqslant 1 . \quad V \quad x \in B_{2}^{d}(1)
$$

If $x \in B_{2}^{d}(1)$, let $y_{i}=\operatorname{sgn}\left(x_{i}\right)$ so $y_{i} \in\{ \pm 1\}$ and $x_{i} y_{i}=\left|x_{i}\right|$.
Then

$$
\begin{aligned}
\|\times\|_{1} & =\sum_{i=1}^{d}\left|x_{i}\right|=\sum_{i=1}^{d} x_{i} y_{i} \\
& \leqslant\left(\sum_{i=1}^{d} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{d} y_{i}^{2}\right)^{1 / 2} \\
& \leqslant 1 \cdot \sqrt{l} \quad x \in \beta_{1}^{d}(\delta d
\end{aligned}
$$

Corollary. $v o l_{d}\left(\mathcal{B}_{\infty}^{d}\left(\frac{1}{\sqrt{d}}\right)\right) \leq \operatorname{vol}_{d}\left(\rho_{2}^{d}(1)\right) \leq v_{d} l_{d}\left(B_{1}^{d}(\sqrt{d})\right)$
$\beta_{\infty}^{d}\left(\frac{1}{\sqrt{d}}\right)$ is a d-dimil cube of rile length $\frac{2}{\sqrt{d}}$,

$$
\operatorname{vol}_{d}\left(B_{\infty}\left(\frac{1}{\sqrt{d}}\right)\right)=\left(\frac{2}{\sqrt{d}}\right)^{d}
$$

$B_{1}^{d}(\sqrt{d})$ has volume $(\sqrt{d})^{d} \cdot v_{d} I_{d}\left(B_{1}^{d}(1)\right)$

$$
\operatorname{vol}_{d}\left(B_{1}^{d}(1)\right)=2 \cdot \frac{1}{d} \cdot \operatorname{vol}_{d-1}\left(B_{1}^{d-1}(1)\right)
$$

Base case: \quad vol $\left(B_{1}^{\prime}(1)\right)=2$.

$$
\begin{aligned}
v_{\Delta} l_{d}\left(B_{1}^{d}(d)\right) & =2 \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \ldots \cdot \frac{2}{d} \\
& =2^{d} / d!
\end{aligned}
$$

Stirling: $d!\sim \sqrt{2 \pi d}\left(\frac{d}{e}\right)^{d}$
Lecture votes: $d!>\sqrt{e d}\left(\frac{d}{e}\right)^{d}$.

$$
\begin{aligned}
& v_{d} l_{d}\left(B_{1}^{d}(1)\right)=\frac{2^{d}}{d!}<2^{d} \cdot \frac{1}{\sqrt{e d}} \cdot\left(\frac{e}{d}\right)^{d} \\
&<\left(\frac{2 e}{d}\right)^{d} \\
& \operatorname{vol}_{d}\left(B_{1}^{d}(\Omega)\right)<(\sqrt{d})^{d} \cdot\left(\frac{2 Q}{d}\right)^{d}=\left(\frac{2 e}{\sqrt{d}}\right)^{d} .
\end{aligned}
$$

Now were got

$$
\left(\frac{\partial}{\sqrt{d}}\right)^{d}<\left.v_{0}\right|_{d}\left(B_{2}^{d}(1)\right)<\left(\frac{\partial e}{\sqrt{d}}\right)^{d}
$$

