31 Jan 2022

Convexity and Gradient Descent

Announcement:

TA office hours begin today.
See office hours calendar on website.

https://cs.cornell.edu/courses/cs4850/2022sp

Fill out OH modality poll. (Pinned post on Ed.)
Write an Ed post requesting CMS access if you don’t have it yet.

Def. If x_1, \ldots, x_m are vectors in vector space V, an affine combination is any linear combination

$$a_1 x_1 + \cdots + a_m x_m$$

such that $a_1 + a_2 + \cdots + a_m = 1$.

A convex combination is an affine combination with $a_1, \ldots, a_m \geq 0$. (weighted average)

A subset of V is convex if it is closed under taking convex combinations. (Suffices to just test that the line segment joining any 2 vectors in the set remains in the set.)
Ex. A halfspace in V is a set of the form

$$H = \{ x | f(x) \leq \theta \}$$

where $f \in V^*$, $f \neq 0$. Equivalently, if V has a non-degenerate inner product,

$$H = \{ x | \langle w, x \rangle \leq \theta \}$$

where $w \neq 0$.

Prop. In a finite dimensional vector space, a closed subset K is convex if and only if it is representable as an intersection of (potentially infinitely many) halfspaces.

Def. A function $h : K \to \mathbb{R}$ is convex if

$$h(tx + (1-t)y) \leq t h(x) + (1-t) h(y) \quad \forall x, y \in K$$
Def: For $K\subseteq V$ convex, $h: K \to \mathbb{R}$,

1. The epigraph of h is
 $$\{(x,y) \in V\times \mathbb{R} \mid y \geq h(x)\}$$

2. The subdifferential of h at $x \in K$ is the subset of V^* defined as
 $$\partial h(x) = \{f \in V^* \mid h(y) \geq h(x) + f(y-x), \forall y \in K\}$$

 - $\partial h(\emptyset) = \{f \in \mathbb{R}^* \mid \forall y \ |y| \geq f(y)\}$
 - $= \{f(x) = ax \mid -1 \leq a \leq 1\}$.

 - $\partial h(1) = \{f \in \mathbb{R}^* \mid \forall y \ |y| \geq 1 + f(y-1)\}$
 - $= \{f(x) = x^2\}$.

 $\partial h(x) = \text{"set of slopes of supporting hyperplanes"}
 \text{to the graph of } h \text{ at } (x, h(x)).$
Theorem. (Proved in lecture notes)
For K ε V convex and \(h: K \rightarrow \mathbb{R} \)

The following are equivalent.

(i) \(h \) is a convex function
(ii) The epigraph of \(h \) is a convex set.
(iii) The subdifferential of \(h \) is nonempty at every point.

Differentiable Functions

Def. The norm of a vector \(\mathbf{x} \) in a space with pos. def. inner product is \(\| \mathbf{x} \| = \langle \mathbf{x}, \mathbf{x} \rangle^{\frac{1}{2}} \).

E.g., in \(\mathbb{R}^n \) with standard inner prod,
\[
\| \mathbf{x} \| = (x_1^2 + \cdots + x_n^2)^{\frac{1}{2}} = \text{Euclidean length of } \mathbf{x} \\
= \text{2-norm of } \mathbf{x}.
\]

Def. A function \(g: V \rightarrow \mathbb{R} \) vanishes to first order at \(\mathbf{0} \) if \(\forall \varepsilon > 0 \exists \delta > 0 \) st.
\[
\frac{g(\mathbf{x})}{\| \mathbf{x} \|} < \varepsilon \quad \text{whenever } \| \mathbf{x} \| < \delta.
\]
Def: \(f : V \to \mathbb{R} \) is differentiable at \(x \) if there exists an element of \(V^* \) called the **differential** of \(f \) denoted \(df_x \), such that

\[
\forall y \quad f(x+y) = f(x) + df_x(y) + \theta(y)
\]

where \(\theta \) vanishes to 1st order at 0.

If \(h \) is convex and differentiable at \(x \) then

\[
\nabla h(x) = \left\{ \frac{dh}{dx} \right\}
\]

For differentiable \(f : \mathbb{R}^n \to \mathbb{R} \) the differential is

\[
\frac{df}{dx} = \left[\frac{\partial f}{\partial x_1} \middle| \frac{\partial f}{\partial x_2} \middle| \ldots \frac{\partial f}{\partial x_n} \right].
\]

The gradient of \(F \) is defined when \(V \) has a non-degenerate inner product and \(f \) is differentiable at \(x \). Then \(\nabla f_x \) is the image of \(df_x \) under the isomorphism \(V^* \to V \).
Ex. \mathbb{R}^n with standard inner prod.

$$(\mathbb{R}^n)^* = \text{row vectors length } n$$

$\mathbb{R}^n = \text{col vectors}$

Isomorphism $= \text{transpose}$

$$\nabla f_x = \left[\begin{array}{c} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{array} \right]$$