31 Jan 2022 Convexity and Gradient Descent
Announcement:
TA office hours begin today.
See office hour calendar on website.
https: /l cs.cornell. edu/courses/cs $4850 / 2022$ sp
Fill out OH modality poll. (Pinned post on Ed.)
Write an Ed post requesting CMS access if you don't have it yet.

Def. If x_{1}, \ldots, x_{m} are vectors in vect ope V_{1} an affine Combination is any linear combination $a_{1} x_{1}+\cdots+a_{m} x_{m}$ such that $a_{1}+a_{2}+\cdots+a_{m}=1$.
$\because \quad A \frac{\text { convex }}{\text { with }} \frac{\text { combination }}{a_{1}, \ldots, a_{m}} \geqslant 0$ is an affine combination
$\because \quad A \frac{\text { convex }}{\text { with }} \frac{\text { combination }}{a_{1}, \ldots, a_{m}} \geqslant 0$ is an affine combination

A subset of V is convex if it is closed under taking convex combinations. (Suffices to just test that the line segment joining any 2 vectors in the set remains in the set.)

Ex. A halfspace in V is a set of the form

$$
H=\{x \mid f(x) \leqslant \theta\}
$$

where $f \in V^{*}, f \neq 0$. Equivalently, if V has a non-deqenerate inner product,

$$
H=\{x \mid\langle w, x\rangle \leqslant \theta\}
$$

where $w \neq 0$.
Pictures: A halfspace in \mathbb{R}^{2} looks like

Prop. In a finite dimensional vector space, a closed subset K is convex if and under $\begin{aligned} & \text { tan } \\ & \text { limit }\end{aligned}$ limit of (potentially infinitely unsay) halfspaces.
$(K \subseteq V$ convex)
Def. A function $h: K \rightarrow \mathbb{R}$ is convex if $h(t x+(1-t) y) \leq t h(x)+(1-t) \overline{h(y)} \quad \forall x, y \in K$

Def. For $K \leqslant V$ convex, $h: K \rightarrow \mathbb{R}$,
(1) The epigraph of h is $\left\{(x, y) \in V \notin \mathbb{R} \left\lvert\, \begin{array}{l}x \in K, \\ y \geqslant h(x)\end{array}\right.\right\}$
(2) The subdifferestiol of h at $x \in K$ is the subset of V^{*} defined as

$$
f(y)=y
$$

$$
\begin{aligned}
\partial h(\overrightarrow{0}) & =\left\{f \in \mathbb{R}^{*}|\forall y| y \mid \geqslant f(y)\right\} \\
& =\{f(x)=a x \mid-1 \leqslant a \leqslant 1\} . \\
\partial h(1) & =\left\{f \in \mathbb{R}^{*}|\forall y| y \mid \geqslant 1+f(y-1)\right\} \\
& =\{f(x)=x\} .
\end{aligned}
$$

$$
f_{-}(y)=-y \quad \partial h(1)=\left\{f \in \mathbb{R}^{*}|\forall y| y \mid \geqslant 1+f(y-1)\right\}
$$

$\partial h(x)=$ "set of slopes of 'supporting hyperplanes' to the graph of h at $(x, \ln (x)$)."

Theorem. (Proved in lecture nites) For $K \subseteq V$ convex and $h: K \rightarrow \mathbb{R}$ The following are equivalent.
(i) h is a convex function
(ii) The epigraph of h is a convex set.
(iii) The subdiffercontal of h is nonempty at every point.

Differentiable Functions

Def. The norm of a vector in a space with pos. def. inner product is $\|x\|=\langle x, x\rangle^{1 / 2}$.
Egg. in \mathbb{R}^{n} with standard 'inner pud,

$$
\begin{aligned}
\|x\|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} & =\text { Euclidean length } f \vec{x} \\
& =2 \text {-norm of } \vec{x} .
\end{aligned}
$$

Ref- A function \rightarrow g iV $\rightarrow \mathbb{R}$ vanisher to first order at \vec{O} if $\forall \varepsilon>0 \quad \exists \delta>0$ st. $\frac{g(x)}{\|x\|}<\varepsilon \quad$ wherever $\|x\|<\delta$.

Def. $f: V \rightarrow \mathbb{R}$ is differentiable at x f there exists an element of V^{*} called the differential of f dented $d f_{x}$, such that

$$
\forall y \quad f(x+y)=f(x)+d f_{x}(y)+g(y)
$$ where g vanishes to $p^{3 t}$ order at $\overrightarrow{0}$.

If h is convex and differentiable at x then

$$
\operatorname{\partial h}(x)=\left\{d h_{x}\right\}
$$

For differrotible $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the differention is $\quad d f_{x}=\left[\left.\left.\left.\frac{\partial f}{\partial x_{1}}\right|_{x} \quad \frac{\partial f}{\partial x_{2}}\right|_{x} \cdots \frac{\partial f}{\partial x_{n}}\right|_{x}\right]$.

The gradient of f is defined when V has a von-degenerate inner prod and f is diffible at x. Then ∇f_{x} is the image of $d f_{x}$ under the isomorphism $\quad V^{*} \longrightarrow V$.

Ex. \mathbb{R}^{n} with standard tuner prod.
$\left(\mathbb{R}^{n}\right)^{*}=$ row vectors length n
$\mathbb{R}^{n}=$ col vectors
isomorphism $=$ transpose

$$
\nabla f_{x}=\left[\begin{array}{c}
\partial f / \partial x_{1} \\
\vdots \\
\partial f / \partial x_{n}
\end{array}\right]
$$

