28 Jan 2020 Imper products, duals, geometry
Announcements
(1) Problem Set 1 due Weds next week.
-.. but you use 2 free slip days to Friday.
(2) Office wis.
a. TA offer hrs start Mon.

Calendar of officer hrs will be posted on course website tonight or tomorrow.
b. Prof. Klienberg extra afire hr. today, $2: 30-3: 30$.
(Listed on course website.)
(3) If you filled out hulk partner survey you should have gotten email from Abhay Singh. (as 2626)
(4) You will be allowed to drop lowest homework score and quiz score.

Inner products on vector spaces
Def. An inner product on V is a function $\quad V \times \vee \rightarrow \mathbb{R}$ notated by $\langle x, y\rangle$, This must satisfy:
a. Symmetry

$$
\begin{gathered}
\langle x, y\rangle=\langle y, x\rangle \\
\langle x, a y+b z\rangle=a\langle x, y\rangle+b\langle x, z\rangle \\
\langle a x+b y, z\rangle \quad \text { (similar) }
\end{gathered}
$$

b. bilinearity

An inner prod is non-degerserate if

$$
\forall x \neq 0 \quad \exists y \text { sit. } \quad\langle x, y\rangle \neq 0
$$

It is positive definite if PSD and $x=0$ is the only solution to $\langle x, x\rangle=0$.

Nates. (1) Pos def \Rightarrow ron-degenerate,
(2) Standard dot product on \mathbb{R}^{n} satisfies al these properties.

$$
\langle x, x\rangle=\sum_{i=1}^{n} x_{i}^{2} \geq 0!
$$

(3) The Lorentzian inner product $\langle x, y\rangle=-x_{0} y_{0}+$ is important in relativity theory.

If $\langle\cdot\rangle$,$\rangle is an inner product on V$ and $\quad x \in V$ then there's a linear function $V \xrightarrow{f_{x}} \mathbb{R}$ defined by

$$
f_{x}(y)=\langle x, y\rangle
$$

The set of all linear functions $V \rightarrow \mathbb{R}$ form a vector space (under adding and scaling functions polntwise) and this v. spec. is dented by V^{*} and called the dual of V.

Ex, If $V=\mathbb{R}^{n}$ then every linear function $V \rightarrow \mathbb{R}$ can be written (uniquely) as

$$
f(x)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} .
$$

Weill call the now vector $\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ the coefficient vector of f.

$$
\left(\mathbb{R}^{n}\right)^{*} \cong \mathbb{R}^{n}
$$

$f \leftrightarrow$ coefficient vector.
Nate

$$
\left[\begin{array}{cc}
a_{1} & \cdots a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

Ex. Real $z=\left\{\left[\left.\begin{array}{l}x \\ \frac{1}{2} \\ 2\end{array} \right\rvert\, x-y+z=0\right\} \subset \mathbb{R}^{3}\right.$.
An example of a function in $Z^{*} /\left\{\begin{array}{l}\operatorname{lineer} \operatorname{tin} \\ z \rightarrow \mathbb{R}\end{array}\right\}$ is $\quad f(x, y, z)=x+y$.
So the coefficient vector of f is $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$.
Anther expression for f is $f(x, y, z)=-z$.
So anther coefficient vector of f is $\left[\begin{array}{lll}0 & 0 & -1\end{array}\right]$.
Z^{*} is not a subspace of $\left(\mathbb{R}^{3}\right)^{*}$,
it is a quotient space
(a vect ope whose elements are equivalence classes of vectors in the bigger space).
Lem. Let V be a fin dinil vect spec, and $\langle\cdot, \cdot\rangle$ a non-degenerate inner prod. Then $\underset{\sim}{V} \cong V_{\psi}^{*}$ Via the bijection

$$
x \longmapsto f_{x}:=(y \longmapsto\langle x, y\rangle)
$$

Proof. See lecture notes.

Geometry

