

26 Jan 2022 Vector Spaces

Def. A vector space (over R) is a nonempty set with two operations

- Vector addition $\quad V \times V \rightarrow V$

$$
(x, y) \longmapsto x+y
$$

- Scalar multiplication

$$
\begin{aligned}
& \mathbb{R} \times V \rightarrow V \\
& (a, x) \mapsto a x
\end{aligned}
$$

These sedisfy.
(i) Associative

$$
\begin{aligned}
(x+y)+z & =x+(y+z) \\
a(b x) & =(a b) x
\end{aligned}
$$

(ii) Commutative

$$
x+y=y+x
$$

(iii) Distributive

$$
\begin{aligned}
& (a+b) x=a x+b x \\
& a(x+y)=a x+a y
\end{aligned}
$$

(iv) Identity $1 \cdot x=x$.

The axioms simply that $\forall x$ the vector $\vec{O} \triangleq 0 \cdot x$ is an identity for addition.

Ex. For any set S, \mathbb{R}^{S} devotes the set of real-ralued functions on S. This is a vector spe under poitwise addition \& mutt.
Eg.

$$
\begin{aligned}
& (f+g)(s)=f(s)+g(s) \\
& (a \cdot f)(s)=a \cdot f(s)
\end{aligned}
$$

Ex- Consider the graph $G=$ $V(G)$ is a 3 -event set.
$\mathbb{R}^{V(G)}$ is the vector space of reat-valued labelings of $V(G)$.
E. 9.

could be representod by

$$
\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \text { in } \mathbb{R}^{3}
$$

A different representation could be $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$.
Ex. Consider $Z \subset \mathbb{R}^{V(G)}$ consisting of freunctions on $V(G)$ that sum to zero. E. 9.

The 3-fold symmetry of Z is mist apparent when one notes elemeats of Z as 3-duples, not 2-tuples.

An isomorphism of vector spaces V, w is a bijection between the elements ff V and $W, \quad V \xrightarrow{T} W$, that respects the vector space operations.

$$
\begin{aligned}
& T(x+y)=T(x)+T(y) \\
& T(a x)=a T(x) .
\end{aligned}
$$

En. The 6 orderings of $V(G)$ yield 6 different isomorphisms $\mathbb{R}^{V(G)} \rightarrow \mathbb{R}^{3}$.

A vector space is finite dimensional if it is isomorphic to \mathbb{R}^{n} for some $n \in \mathbb{N}$. (BTw, \mathbb{R}^{0} is a one-clemert set $\{\overrightarrow{0}\}$.)
Fact: If $V \cong \mathbb{R}^{n}$ then $V \not \approx \mathbb{R}^{m}$ for any $m \neq n$.
The unique n such that $V \cong \mathbb{R}^{n}$ is called the dimension of V.
(See lecture rates for proof of uniqueness.)

Def. If V is a rect space ah $S \subseteq V$ a linear combination of elements of S
is a finite sum of the form

$$
a_{1} x_{t}+a_{2} x_{2}+\cdots+a_{m} x_{m}
$$

where $\quad a_{i} \in \mathbb{R}, \quad x_{i} \in S$ for $i=1, \ldots, m$.
The linear. cont. is trivial if $a_{i}=0 \forall i$ othereribe nontrivial.
S is linearly independent if all the nontrivial lin combinations of its elements are $\neq 0$,
A basis of V is a maximal linearly independent set.
The dimension of V is the cardinality of any basis.
(Proving all boses have same cardinality takes work.)
If V is a vector space and B is a basis, thew the function $T: \mathbb{R}^{B} \rightarrow V$ defined by $T(f)=\sum_{b \in B} f(b) \cdot b$ is an isomorphism.

