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Representing data in the form of vectors lies at the core of machine learning, data science, and
scienti�c computing. These notes explain the basic theory of vector spaces over the real numbers.
Di�ering from most introductory courses on linear algebra, we will adopt a “coordinate-free”
viewpoint that treats vectors are an abstract data type supporting the operations of addition and
scalar multiplication.

1 Algebraic de�nitions

De�nition 1.1. A vector space (over the real numbers) is a non-empty set V of elements, called
vectors, equipped with two operations, called addition and scalar multiplication.

• Addition is a binary operation of type V × V → V . In other words two vectors x and y can
be added to yield another vector, x + y.

• Scalar multiplication is a binary operation of type R×V → V . In other words we can scale
a vector x by a real number a to obtain another vector, ax.

These operations are required to satisfy the associative, commutative, distributive, and multi-
plicative identity laws.

1. x + y = y + x.
2. (x + y) + z = x + (y + z) and (ab)x = a(bx).
3. (a + b)x = ax + bx and a(x + y) = ax + ay.
4. 1x = x.

These laws imply the existence of a vector called the zero vector, which we denote by 0, that
satis�es 0 + x = x and 0x = 0 for every x ∈ V.

The most important and archetypical vector spaces are the spaces Rn, de�ned for each positive
integer n. Vectors in Rn are n-tuples of real numbers. Addition and scalar multiplication are
de�ned component-wise. In these notes we will represent elements of Rn by column vectors,
such as

[
1
0
−1

]
.

The key distinction here is that we are not de�ning vectors to be n-tuples of real numbers, and
then de�ning addition and scalar multiplication as operations on n-tuples. Rather, we are de�ning
a vector space to be any structure possessing addition and scalar multiplication operations that
satisfy the key properties in De�nition 1.1, and then we are admitting the vector space Rn as an
example of one such structure. This is similar to the distinction between an abstract data type,
such as a list, and a data structure that implements that abstract data type, such as a doubly
linked list. For the purpose of reasoning about vectors, everything we need to know about them
is summarized in the abstract de�nition; for the purpose of calculating with them, we need to
choose a speci�c way of representing the elements of a vector space, e.g., as n-tuples of real
numbers.
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Example 1.1. For any set S , there is a vector space RS of functions from S to the real numbers,
with addition and scalar multiplication de�ned pointwise: if x and y are two functions from S to
R, a ∈ R is a scalar, and s is any element of S , then x + y is the function de�ned by (x + y)(s) =

x(s)+y(s) and ax is the function de�ned by (ax)(s) = ax(s). For example, if G is the graph shown
at right, then RV(G) is the vector space of functions that label each vertex of
G with a real number. It’s evident that we can represent elements of RV(G)

as ordered 3-tuples of real numbers by choosing an ordering of the vertices
of G. However, the choice of ordering is arbitrary, so there are at least six
equally reasonable ways to model the elements of RV(G) as elements of R3. We
describe this state of a�airs by saying that the vector spaces RV(G) and R3 are
isomorphic but not equal to one another.

Example 1.2. Continuing with the example above, let Z denote the subset of RV(G) consisting of
functions that sum to zero. In other words x belongs to Z if and only if it satis�es ∑

v∈V(G) x(v) = 0.
Then Z is also a vector space. An element of Z could be represented by an ordered triple of
real numbers that sum to zero, such as the function values at the top, left, and right vertices
respectively. Alternatively, we could represent an element of Z by an ordered pair of numbers,
such as the function values at the left and right vertices only, since the value at the top vertex
is uniquely determined by the other two. The vector space Z will become a running example in
these notes.

1.1 Linear transformations and isomorphisms

Now that we’ve de�ned vector spaces, it’s time to talk about functions between vector spaces.
The most important type of function between vector spaces is called a linear transformation, and
it preserves all of the algebraic structure of the space.

De�nition 1.2. If V and W are vector spaces, a linear transformation from V to W is a function
T : V → W that satis�es

T (ax + by) = aT (x) + bT (y)

for all x, y ∈ V and a, b ∈ R.
A linear transformation is called an isomorphism, or equivalently invertible, if there is another
linear transformation T−1 : W → V such that T−1 ◦ T and T ◦ T−1 are the identity functions of V
and W , respectively. We then call T−1 the inverse of T . We say V and W are isomorphic if there is
an isomorphism from V to W .

Example 1.3. When m < n, an important class of linear transformations from Rn to Rm are the
coordinate projections: functions that modify an n-tuple to an m-tuple by extracting a speci�ed
subset of the coordinates. For example, the coordinate projection π13 from R3 to R2 deletes the
middle coordinate of a 3-tuple while preserving the �rst and third coordinates, e.g. π13

[
1
0
−1

]
=

[ 1
−1

]
.

For any vector spaces V and W , the set of linear transformations from V to W forms a vector space
under pointwise addition and scalar multiplication. This vector space is denoted by hom(V,W).
The isomorphisms from V to W don’t form a vector space because, for example, when we multiply
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an isomorphism by the scalar 0 we obtain the function that maps every x in V to 0 in W , which
is no longer an isomorphism.

1.2 Bases and dimension

It seems self-evident that the vector spaces R2 and R3 are not isomorphic, because one of them is
two-dimensional while the other is three-dimensional. How do we actually de�ne dimension of
a vector space? How do we con�rm that vector spaces of di�erent dimensions are really not iso-
morphic to one another? To answer these questions, we must �rst introduce the very important
notion of a basis for a vector space.

De�nition 1.3. A linear combination of vectors x1, . . . , xk is a �nite sum of the form a1x1 +a2x2 +

· · ·+akxk. It is non-trivial if at least one of the coe�cients ai is not equal to zero. A set S of vectors
is linearly independent if the zero vector cannot be expressed as a non-trivial linear combination
of elements of S . A basis of a vector space is a maximal linearly independent set.

Lemma 1.1. If B is a basis of a vector space V , then every element of V can be represented as a linear
combination of elements of B. This representation is unique, up to a reordering of the summands.

Proof. If v ∈ V cannot be represented as a linear combination of elements of B, then B ∪ {v}
is linearly independent, contradicting the maximality of B. Hence, every element of V can be
expressed as a linear combination of elements of B. To see why the representation is unique,
consider any x ∈ V and consider two representations

x = a1b1 + · · · + ambm = a′1b′1 + · · · + a′nb′n.

Subtracting these two representations of x from one another, we obtain a representation of 0
as a linear combination of elements of B. Since B is linearly independent, all the coe�cients in
this linear combination must be zero. Hence, the two representations of x are identical, up to a
reordering of the terms of the sum. �

Corollary 1.2. IfV is a vector space with a �nite basis B, then the linear transformation T : RB → V
de�ned by T ( f ) =

∑
b∈B f (b)b is an isomorphism.

Proof. By Lemma 1.1, for every x ∈ V there is a unique representation of the form x =
∑

b∈B abb.
Let C(x) be the function in RB de�ned by C(x)(b) = ab. We leave it as an exercise for the reader
to verify that C is a linear transformation and that C ◦ T and T ◦ C are the identity functions of
their respective vector spaces. �

The image of x ∈ V under the isomorphism C : V → RB is a B-tuple of real numbers. The
elements of this tuple are called the components of x in the basis B. ?? shows that every �nite-
dimensional vector space V is isomorphic to Rn for some value of n, and we will soon see this
value is unique. However, there are many isomorphisms from V to Rn, corresponding to all the
di�erent ways to choose an (ordered) basis of V . For this reason, the components of a vector are
only well-de�ned in contexts where an ordered basis has been speci�ed.

3



De�nition 1.4. The standard basis of Rn is the basis {e1, . . . , en}, where ei denotes a vector whose
ith coordinate is 1 and all other coordinates are zero.

Lemma 1.3. A set of vectors B ⊂ V is a basis if and only if every element of V can be uniquely
expressed as a linear combination of elements of B.

Proof. The “only if” direction was proven in Lemma 1.1. If B ⊂ V is a subset having the property
that every element of V can be uniquely expressed as a linear combination of elements of B,
then in particular the only representation of 0 as a linear combination of elements of B is the
trivial representation; this veri�es that B is linearly independent. Furthermore, for any x < B,
by our assumption on B we can �nd a representation x = a1b1 + · · · + ambm. Then the equation
0 = a1b1 + · · ·+ ambm − x shows that B∪ {vx} is not linearly independent. Hence, B is a maximal
linearly independent set, i.e. B is a basis, as claimed. �

We will be de�ning the dimension of a vector space to be the cardinality of any basis. However,
in order to make such a de�nition we need to verify that all bases have the same cardinality. This
is accomplished in the following pair of lemmas.

Lemma 1.4 (Exchange Lemma). If V is a vector space with basis B, then for any nonzero vector
x < B we can obtain another basis from B by exchanging x for one of the vectors y ∈ B. In other
words, B′ = (B \ {y}) ∪ {x}.

Proof. Using Lemma 1.1 and the fact that x , 0, we know that x can be expressed as a non-trivial
linear combination x = a1b1 + · · · + ambm. Assume without loss of generality that a1 , 0. Then

b1 = x −
a2

a1
b2 − · · · −

am

a1
bm. (1)

For any vector z that can be expressed as a linear combination of elements of B, we can substitute
the right side of (1) in place of b1, to obtain a representation of z as a linear combination of ele-
ments of B′ = (B \ {b1}) ∪ {x}. To see that this representation of z is unique, consider subtracting
any two distinct representations of z as linear combinations of elements of B′, to obtain a nontriv-
ial representation of 0 as a linear combination of elements of B′. Let ax denote the coe�cient of x
in this representation of 0. Our hypothesis that B is linearly independent means that 0 cannot be
represented as a nontrivial linear combination of elements of B, so we know that ax , 0. Now if
we substitute the expression a1b1 + · · · + ambm in place of x, we obtain another representation of
0, this time as a linear combination of elements of B, in which the coe�cient of b1 is a1ax. Since
a1ax , 0, this contradicts the assumption that B is linearly independent. �

Theorem 1.5. If V is a vector space with a �nite basis, then all bases of V have the same number
of elements.

Proof. Let B and B′ be two bases of V , with B �nite. Denote the elements of B by {b1, . . . ,bd}.
Now construct a sequence of bases by the following procedure. Start with B0 = B′, and repeatedly
perform the exchange procedure in the proof of Lemma 1.4, inserting elements of B one by one.
This yields a sequence of bases B0, B1, . . . , Bd, such that B0 = B′, and for i > 0, Bi = (Bi−1∪ {bi}) \
b′i−1 for some b′i−1 ∈ Bi−1. When choosing the vector b′i−1 to remove from Bi−1 while inserting bi, let
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us never remove a vector that belongs to B. This is possible because in the proof of Lemma 1.4, the
vector that was removed from the basis when inserting x was allowed to be any vector having a
nonzero coe�cient when x is represented using the basis B. We know that when bi is represented
using the basis Bi−1, at least one of the basis vectors with a nonzero coe�cient does not belong
to B; this is because B is linearly independent, so bi cannot be represented as a non-trivial linear
combination of elements of B \ {bi}.

By the time we reach Bd in this repeated-exchange process, we have inserted each element of
B and have not removed any elements of B, so B ⊆ Bd. One basis cannot be a proper subset of
another, since that would violate the maximality property of bases. Hence B = Bd. Since each
two consecutive sets in the sequence of B0, . . . , Bd have the same cardinality, we conclude that
B′ = B0 must have the same cardinality as B, as claimed. �

1.3 Inner products and the dual of a vector space

An important binary operation on Rn is the dot product operation, de�ned by x · y =
∑n

i=1 xiyi.
In the setting of abstract vector spaces, the appropriate generalization of the dot product is a
structure called a positive de�nite inner product, whose essential properties are de�ned as follows.

De�nition 1.5. An inner product structure on a vector space is a function of type V × V → R,
with the inner product of vectors x, y ∈ V being denoted by 〈x, y〉 . An inner product is required
to satisfy the following properties.

1. Bilinearity:

〈ax + by, z〉 = a 〈x, z〉 + b 〈y, z〉 and 〈x, ay + bz〉 = a 〈x, y〉 + b 〈x, z〉 .

2. Symmetry:
〈x, y〉 = 〈y, x〉 .

An inner product is called non-degenerate if for every x , 0 there exists a y such that 〈x, y〉 , 0.
It is called positive semide�nite if 〈x, x〉 ≥ 0 for all x, and positive de�nite if the inequality is strict
for all x , 0.

Note that a positive de�nite inner product is always non-degenerate: if x , 0 then 〈x, x〉 , 0. The
dot product on Rn is positive de�nite because 〈x, x〉 = x2

1 + · · ·+ x2
n, which is always non-negative

and equals zero only when x = 0.
An example of a non-degenerate inner product that is not positive de�nite is the Lorentzian inner
product on Rn:

〈x, y〉L = −x1y1 + x2y2 + · · · + xnyn.

This inner product plays an important role in the physics of spacetime, where the �rst coordinate
represents the time dimension and the remaining coordinates represent the spatial dimensions.
According to Einstein’s theory of special relativity, the linear transformations that one should
apply to shift from one observer’s system of spacetime coordinates to another’s are precisely the
linear transformations that preserve the Lorentzian inner product of vectors.
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1.4 The dual of a vector space

De�nition 1.6. The vector space hom(V,R) of real-valued linear functions on V is called the dual
of V and is denoted by V∗.

Lemma 1.6. Every �nite-dimensional vector space is isomorphic to its own dual.

Proof. Suppose V is a vector space and B is a �nite basis for V . Recall from Corollary 1.2 that
V is isomorphic to RB. The dual vector space V∗ is also isomorphic to RB, via the isomorphism
that maps each linear function f : V → R to the function fB : B→ R obtained by restricting the
domain of f from V to B. To prove this is an isomorphism between V∗ and B we need to prove
it has an inverse. In other words, we need to show that for each function fB : B → R there is a
unique linear function f : V → R that restricts to fB. If f is any linear function that restricts to
fB, then for any vector x =

∑
b∈B xbb the value f(x) must satisfy

f(x) =
∑
b∈B

xbfB(b).

This shows there can be at most one linear function f : V → R that restricts to fB, since the
value f(x) on any x is uniquely determined by the equation above. To verify that there is exactly
one linear function that restricts to fB, we must check that the function f de�ned above is linear.
Suppose x, y ∈ V and r, s ∈ R. If x =

∑
b∈B xbb and y =

∑
b∈B ybb then

rx + sy =
∑
b∈B

(rxb + syb)b

so
f(rx + sy) =

∑
b∈B

(rxb + syb)fB(b) = r
∑
b∈B

xbfB(b) + s
∑
b∈B

ybfB(b) = rf(x) + sf(y)

which con�rms that f is linear. �

Example 1.4. Every real-valued linear function f on R3 can be represented (uniquely) by a se-
quence of three coe�cients a1, a2, a3 such that

f
([ x1

x2
x3

])
= a1x1 + a2x2 + a3x3.

The dual of R3 is isomorphic to R3, under the isomorphism that maps a linear function f to the
coe�cient vector

[ a1
a2
a3

]
.

Generalizing the previous example, the dual of Rn is isomorphic to Rn via the isomorphism that
maps a linear function to its coe�cient vector. To facilitate distinguishing between Rn and its
dual, we will represent elements of (Rn)∗ as row vectors rather than column vectors. In other
words, we will prefer to represent the linear function f in Example 1.4 using the row vector
f = [ a1 a2 a3 ] rather than the column vector

[ a1
a2
a3

]
. This notation is convenient because it means

that the application of the function f to the vector x can simply be written as fx, using the rules
for multiplying a 1-by-n matrix by an n-by-1 matrix.
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Generalizing these examples still further, a non-degenerate inner product structure on a �nite-
dimensional vector space always allows one to de�ne an isomorphism between V and V∗. How-
ever, it’s important to note that there are many isomorphisms between V and V∗, and there’s no
particular way to single out one of them without singling out a non-degenerate inner product
structure.

Lemma 1.7. If V is a �nite dimensional vector space and 〈·, ·〉 is a non-degenerate inner product,
then there is an isomorphism T : V → V∗ where T (x) is de�ned to be the linear function tx speci�ed
by the formula tx(y) = 〈x, y〉 .

Proof. The bilinearity property of inner products ensures that the function T de�ned in the lemma
statement is a linear function from V to V∗. It is injective because if x, y ∈ V satisfy T (x) = T (y),
then for all z ∈ V we have 〈x − y, z〉 = 〈x, z〉− 〈y, z〉 = tx(z)− ty(z) = 0. As 〈·, ·〉 is non-degenerate,
this implies x − y = 0 hence x = y. From Lemma 1.6, we know that V and V∗ have the same
dimension. We leave it as an exercise to the reader to verify that an injective map between �nite-
dimensional vector spaces of the same dimension must be an isomorphism. �

Example 1.5. Suppose V is the subspace of R3 consisting of vectors whose coordinates sum to
zero, with the positive de�nite inner product structure given by〈[ x1

y1
z1

]
,
[ x2

y2
zz

]〉
= x1x2 + y1y2 + z1z2.

One element of V∗ is the linear function f that sums the �rst two coordinates of a vector, i.e. the
function f

([ x
y
z

])
= x + y. If we are representing elements of V by three-tuples

[ x
y
z

]
then f can be

represented by the row vector [ 1 1 0 ]. However, since −z = x + y for every
[ x

y
z

]
∈ V , the function

f is also expressed by the formula f
([ x

y
z

])
= −z and can be represented by the vector [ 0 0 −1 ].

This example underscores the importance of distinguishing between a vector space and its dual.
The vector space R3 is isomorphic to its dual, however when we pass to a subspace of R3, the
dual of the subspace is not a subspace of (R3)∗. Instead, it is a quotient of (R3)∗, i.e. a vector space
whose elements are equivalence classes of vectors in (R3)∗.

2 Convexity and norms

One the wonderful things about vector spaces is that, although they are de�ned by algebraic
operations, we can also reason about them using geometric notions like convexity, distance, and
volume. In this section we develop some basic facts about these three notions.

2.1 Convex sets and functions

A subset of a vector space is convex if it contains the line segment joining any two of its points.
This informal de�nition is formalized as follows.
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De�nition 2.1. If F = {x1, . . . , xm} is a �nite subset of a vector space V , an a�ne combination of
points of F is a linear combination a1x1 + · · ·+amxm whose coe�cients satisfy a1 + · · ·+am = 1. A
convex combination of points of F is an a�ne combination whose coe�cients are non-negative.
(Another name for a convex combination of vectors is a weighted average.) The a�ne hull and
convex hull of F are the set of all a�ne combinations and all convex combinations of elements of
F, respectively.

The a�ne hull of two points is the line passing through them, the a�ne hull of three non-collinear
points is the plane passing through them, and so on. The convex hull of two points is the line
segment joining them, the convex hull of three non-collinear points is the triangle joining them,
and so on.

De�nition 2.2. A subset K of a vector space is convex if every convex combination of points in
K belongs to K. Equivalently, K is convex if, for every x, y ∈ K and every t ∈ [0, 1], the vector
(1 − t)x + ty also belongs to K.

A simple inductive proof veri�es that the two formulations of convexity in De�nition 2.2 are,
indeed, equivalent. Clearly, the �rst de�nition implies the second because the expression (1 −
t)x + ty de�nes a convex combination of x and y when 0 ≤ t ≤ 1. Conversely, suppose K satis�es
the second de�nition. We assert that for every m ≥ 2, every convex combination of m points
of K belongs to K. The base case m = 2 is simply a restatement of the second de�nition. For
the inductive step, if non-negative coe�cients a1, a2, . . . , am sum up to 1, assume without loss of
generality that am > 0, and let t = 1 − a1 = a2 + a3 + · · · + am. Since t > 0, we have

a1x1 + a2x2 + · · · + amxm = (1 − t)x1 + t
(

a2
t x2 + · · · + am

t xm

)
.

By the induction hypothesis, the vector x′ =
(

a2
t x2 + · · · + am

t xm

)
belongs to K. Hence, (1−t)x1+tx′

also belongs to K, as desired.
An important type of convex set is a halfspace, which is a set of the form

H = {x | f(x) ≤ θ} , (2)

for some nonzero f ∈ V∗ and some θ ∈ R. Equivalently, due to Lemma 1.6, we can de�ne a
halfspace using a non-degenerate inner product as

H = {x | 〈w, x〉 ≤ b} , (3)

where w is a nonzero vector in V called the normal vector to H, and θ ∈ R. To verify that the set
H de�ned using (2) is convex, observe that

f(a1x1 + · · · + amxm) = a1f(x1) + · · · + amf(xm).

If a1, a2, . . . , am are the coe�cients of a convex combination, then the right side of this equation
is a weighted average of the values f(x1), . . . , f(xm). If each of those values is less than or equal to
θ, then their weighted average must also be less than or equal to θ.
Convexity of a closed set1 can be equivalently de�ned using halfspaces.

1A subset S of a �nite-dimensional vector space is called closed if the limit point of every convergent sequence
of vectors in S is also contained in S .
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Lemma 2.1. If V is a �nite-dimensional vector space and K is a closed subset of V , then K is convex
if and only if it is equal to the intersection of a set of halfspaces.

The proof of the lemma is not quite self-contained. It uses some facts from topology that we state
here without proof.

1. If V is a �nite-dimensional vector space and 〈·, ·〉 is a positive de�nite inner product, then
for any x the function q(y) = 〈y − x, y − x〉 is continuous.

2. If S is a non-empty, closed, bounded subset of a �nite-dimensional vector space and f is a
continuous function on S , then there exists a point z ∈ S such that f (z) = inf{ f (y) | y ∈ S }.

Proof. From the de�nition of a convex set, it is clear that an intersection of convex sets is convex.
Conversely, if K is convex then we must prove it is the intersection of a set of halfspaces. Speci�-
cally, letH (K) denote the set of halfspaces that contain K as a subset, and let K′ = ∩H∈H (K)H. (If
H (K) = ∅ then interpret this intersection to be the entirety of V .) Then K′ is the intersection of
a set of halfspaces, and we shall show that K′ = K. The containment K ⊆ K′ is immediate from
the de�nition of K′. To show that K′ ⊆ K, we prove the reverse containment V \ K ⊆ V \ K′. In
other words, if x ∈ V \ K, we must �nd a halfspace H that contains K but not x. Let 〈·, ·〉 be a
positive-de�nite inner product on V , and consider the continuous function q(y) = 〈y − x, y − x〉.
Let q0 = inf{q(y) | y ∈ K} and observe that q0 > 0. The set K0 = {y ∈ K | q(y) ≤ q0 + 1} is
non-empty, closed, and bounded, so there exists z ∈ K0 with q(z) = q0.

Now consider the set

H = {y | 〈z − x, y − x〉 ≥ q0} = {y | 〈z − x, y〉 ≥ q0 + 〈z − x, x〉}.

This is a halfspace, and x < H because 〈z − x, x − x〉 = 0 < q0. To conclude the proof we will
show that K ⊆ H. For any y ∈ K consider the function

f (t) = q(z+t(y−z)) = 〈z − x + t(y − z), z − x + t(y − z)〉 = q(z)+2t 〈z − x, y − z〉+t2 〈y − z, y − z〉 .

For 0 ≤ t ≤ 1 the vector z + t(y− z) = (1− t)z + ty belongs to K, and we know that the minimum
value of q on K is attained at z, so the quadratic function f (t) on the interval 0 ≤ t ≤ 1 attains
its minimum value at t = 0. Therefore, f ′(0) ≥ 0, which implies 〈z − x, y − z〉 ≥ 0. Now, we �nd
that

〈z − x, y − x〉 = 〈z − x, y − z〉 + 〈z − x, z − x〉 ≥ 0 + q0

hence y satis�es the de�ning inequality of the halfspace H. As y was an arbitrary element of K,
we have proven K ⊆ H as desired. �

In addition to convex sets, another important notion is that of a convex function.

De�nition 2.3. If V is a vector space, K ⊆ V is a convex set, and h : K → R is a function, we
say that h is convex if it satis�es

h((1 − t)x + ty) ≤ (1 − t)h(x) + th(y) ∀x, y ∈ K, 0 ≤ t ≤ 1
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Analogous to the two equivalent de�nitions of a convex set, it is equivalent to say that h is convex
if and only if, for all �nite sets F = {x1, . . . , xm} ⊆ K and convex combinations x = a1x1+· · ·+amxm,
the inequality

h(x) ≤ a1h(x1) + · · · + amh(xm).

This inequality (along with its generalization to integrals rather than �nite sums) goes by the
name of Jensen’s convex function inequality.

We proceed to state two more de�nitions related to convex functions and then a lemma providing
two equivalent characterizations of convexity.

De�nition 2.4. If V is a vector space, K ⊆ V , and h : K → R, then the epigraph of h is the set of
all pairs (x, y) ∈ V ×R such that y ≥ h(x). For any x ∈ K, the subdi�erential of h at x is de�ned to
be the set

∂h(x) = {f ∈ V∗ | f(y) − f(x) ≤ h(y) − h(x) ∀y ∈ K}.

One can visualize the epigraph of h as an in�nitely tall multidimensional bowl-shaped region sit-
ting above the graph of h in V×R. To visualize what it means for f to belong to the subdi�erential
of h, note that the graph of the function Lf,x(y) = f(y) − f(x) + h(x) is a hyperplane in V × R and
it touches the graph of h at the point (x, h(x)). If the graph of Lf,x is a supporting hyperplane of
the epigraph of h (i.e., a hyperplane that touches the epigraph of h at least once point and lies
(weakly) below it everywhere) then f belongs to the subdi�erential ∂h(x).

If V has a non-degenerate inner product, this de�nes an isomorphism between V∗ and V . The
image of ∂h(x) under this isomorphism is a set of vectors called the subgradient of h at x.
To relate epigraphs and subgradients to convexity, we need to de�ne one more notion: open
subsets of a �nite-dimensional vector space. Intuitively, a subset U ⊆ V is open if every point of
U is completely surrounded by other points of U . For example, in the open-dimensional vector
space R, an open interval (a, b) = {x | a < x < b} is open whereas a closed interval [a, b] = {x |
a ≤ x ≤ b} is not, because the endpoints of a closed interval are not surrounded on both sides by
other points of the interval.

De�nition 2.5. If V is a �nite-dimensional vector space, a subset U ⊆ V is called an open set if
it satis�es the following property: for all x, y ∈ U there exists some δ > 0 such that for every ε
with |ε| < δ, the vector x + εy belongs to U .

Lemma 2.2. For a convex open subset K of a �nite-dimensional vector space V , the following prop-
erties of a function h : K → R are equivalent.

1. h is convex.

2. The epigraph of h is a convex subset of V × R.

3. The subdi�erential of h is nonempty at every point of K.

Proof. We will prove the cycle of implications (3)⇒ (1)⇒ (2)⇒ (3), which su�ces to prove the
equivalence of the three condiions.
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(3)⇒ (1): If the subdi�erential of h is nonempty at every point of K, then consider any two points
x, x′ and their convex combination x′′ = (1 − t)x + tx′. The subdi�erential ∂h(x′′) is non-empty,
so it contains some f ∈ V∗ that satis�es f(y)− f(x′′) ≤ h(y)− h(x′′) for all y ∈ K. In particular, we
have the two inequalities

f(x) − f(x′′) ≤ h(x) − h(x′′)
f(x′) − f(x′′) ≤ h(x′) − h(x′′).

Multiplying the �rst by 1 − t and the second by t we obtain

(1 − t)f(x) + tf(x′) − f(x′′) ≤ (1 − t)h(x) + th(x′) − h(x′′).

The left side is zero, because f is a linear function that x′′ = (1−t)x+tx′.Hence, (1−t)h(x)+th(x′) ≥
h(x′′) = h((1 − t)x + tx′′) which con�rms that h is convex.
(1)⇒ (2): Suppose h is convex. Let (x, y) and (x′, y′) denote two points in the epigraph of h. Then
y ≥ h(x) and y′ ≥ h(x′) so

(1 − t)y + ty′ ≥ (1 − t)h(x) + th(x′) ≥ h((1 − t)x + tx′)

which shows that (1 − t)(x, y) + t(x′, y′) belongs to the epigraph of h and thus con�rms that the
epigraph is convex.
(2) ⇒ (3): If the epigraph of h is convex and x is a point of K, then for every n > 0 the point
(x, h(x) − 1/n) does not belong to the epigraph of h. The closure of the epigraph of h (i.e., the
set consisting of the epigraph along with every point in V × R that is the limit of a sequence of
points in the epigraph) is a closed, convex subset of V × R. By Lemma 2.1 it follows that there
is a halfspace Hn that contains the epigraph of h but doesn’t contain (x, h(x) − 1/n). The set of
points (x′, y′) ∈ Hn is de�ned by an inequality of the form fn(x′) − any′ ≤ θn, where fn ∈ V∗ and
an, θn ∈ R.
Choose an isomorphism between V∗ × R and Rd+1, where d is the dimension of V , and let S be
the image of the unit sphere in Rd+1 under this isomorphism. By rescaling (fn, an) if necessary,
we can assume that (fn, an) ∈ S for each n. Since S is a closed and bounded subset of V∗ ×R, and
V∗ × R is �nite dimensional, the sequence (fn, an)∞n=1 has an in�nite subsequence that converges
to a limit point (f, a) ∈ S . If we look at the values θn as n ranges over the same subsequence, we
claim that they converge to the number θ = x(x) − ah(x). To prove this, note that (x, h(x)) ∈ Hn

but (x, h(x) − 1/n) < Hn, which means

fn(x) − anh(x) ≤ θn < fn(x) − anh(x) + an/n. (4)

Passing to a subsequence on which (fn, an) converges to (f, a), the left and right sides both con-
verge to f(x) − ah(x), so θn must converge to the same number.
Next we claim that the halfspace H consisting of all pairs (x′, y′) satisfying the inequality f(x′) −
ay′ ≤ θ contains the epigraph of h. To see that this is so, assume y′ ≥ h(x′) and note that for each
n we know that (x′, y′) belongs to Hn hence it satis�es fn(x′)−any′ ≤ θn. Passing to a subsequence
on which (fn, an) → (f, a) and then taking the lim inf of both sides, we �nd that f(x′) − ay′ ≤ θ,
as claimed.
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For any x′ in K, the point (x′, h(x′)) belongs to the epigraph of H, hence it satis�es

f(x′) − ah(x′) ≤ θ = f(x) − ah(x).

Rearranging this equation we �nd that
1
a f(x′) − 1

a f(x) ≤ h(x′) − h(x)

for all x′ ∈ K, which con�rms that 1
a f belongs to ∂h, so ∂h is nonempty. �

2.2 Norms

A norm on a vector space provides a way to measure the length of a vector, and hence the distance
between two vectors.

De�nition 2.6. If V is a vector space, a norm on V is a function ‖ · ‖ from V to R satisfying:

1. Non-negativity: ‖x‖ ≥ 0 for all x ∈ V , with equality if and only if x = 0.

2. Linear homogeneity: ‖ax‖ = |a|‖x‖ for all a ∈ R and x ∈ V .

3. Subadditivity: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V .

Common examples of norms on Rn are the Lp norms, de�ned for 1 ≤ p < ∞ by

‖x‖p =

 n∑
i=1

|xi|
p

1/p

and for p = ∞ by
‖x‖∞ =

n
max

i=1
{|xi|}.

It is easy to check that these norms satisfy non-negativity and linear homogeneity; the proof of
subadditivity is omitted from these notes but can be found in many textbooks.

Lemma 2.3. For x ∈ Rn, the p-norm ‖x‖p is a non-increasing function of p.

Proof. For x = 0 the assertion is trivial, since ‖x‖p = 0 for all p. Otherwise, consider any x , 0
and any p, q such that 1 ≤ p < q. We wish to show that ‖x‖p ≥ ‖x‖q. By rescaling x if necessary,
we may assume ‖x‖q = 1. (The rescaling doesn’t a�ect the validity of the inequality, since the
linear homogeneity property ensures both sides are scaled by the same amount.) This implies
that |xi| ≤ 1 for all i, either because q = ∞ or because q < ∞,

∑q
i=1 |xi|

q ≤ 1, and every term in the
sum is non-negative. Since |xi| ≤ 1 and p < q, we have |xi|

p ≥ |xi|
q. Summing these inequalities,

‖x‖p
p =

n∑
i=1

|xi|
p ≥

n∑
i=1

|xi|
q = 1.

Taking the pth root of both sides, ‖x‖p ≥ 1 = ‖x‖q. �

12



When x is a vector with just one nonzero coordinate xi, the p-norm ‖x‖p is equal to |xi| for every
p. When x has more than one nonzero coordinate, ‖x‖p is a strictly decreasing function of p: it
is largest when p = 1 and smallest when p = ∞. More generally, having large 1-norm can often
be interpreted as a sign of density (i.e., having many nonzero coordinates) while having small
1-norm is often interpreted as a sign of sparsity. This intuition will be put to use later in the
course.
De�nition 2.7. If V is a vector space and ‖ · ‖ is a norm, the unit ball of ‖ · ‖ is the set of all vectors
in V whose norm is less than or equal to 1.
Lemma 2.4. If V is a vector space and ‖ · ‖ is a norm, the unit ball of ‖ · ‖ is a closed, bounded, convex
set that is centrally symmetric, meaning that for every vector x in the unit ball, −x along belongs
to the unit ball. Conversely, for any closed, bounded, centrally symmetric convex set B, there exists
a norm whose unit ball is B.

The following important inequality is usually called the Cauchy-Schwartz inequality.
Lemma 2.5. If 〈·, ·〉 is a positive de�nite inner product on a vector space, then for any two vectors
x, y we have

〈x, y〉 ≤ 〈x, x〉1/2 · 〈y, y〉1/2 ,
with equality if and only if x is a scalar multiple of y or vice-versa.

Proof. If x or y is equal to 0 then both sides of the inequality are zero, so the lemma holds. Oth-
erwise, note that replacing x and y with ax and by, respectively, multiplies both sides of the
inequality by ab. Hence, we may prove the lemma in the special case when 〈x, x〉 = 〈y, y〉 = 1;
the general case will then follow by scaling x and y suitably.
When 〈x, x〉 = 〈y, y〉 = 1, we have

0 ≤ 〈x − y, x − y〉 = 〈x, x〉 − 2 〈x, y〉 + 〈y, y〉 = 2 − 2 〈x, y〉 .

Furthermore, the inequality is strict when x − y , 0. Hence, we conclude that 〈x, y〉 ≤ 1 =

〈x, x〉1/2 · 〈y, y〉1/2 and that the inequality is strict unless x = y. �

An easy application of the Cauchy-Schwartz inequality shows that any positive de�nite inner
product can be used to de�ne a norm on a vector space.
Lemma 2.6. If V is a vector space with a positive de�nite inner product 〈·, ·〉, then the function
de�ned by

‖x‖ = 〈x, x〉1/2

is a norm.

Proof. Non-negativity follows from positive de�niteness of the inner product, and linear homo-
geneity follows from bilinearity. To prove subadditivity, observe that for any x, y,

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + 2 〈x, y〉 + ‖y‖2.
(‖x‖ + ‖vy‖)2 = ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2.

The Cauchy-Schwartz inequality implies that the right side of the �rst equation is less than or
equal to the right side of the second equation. �
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For the standard inner product on Rn the norm de�ned in Lemma 2.6 coincides with the L2 norm.
For other positive de�nite inner products on Rn, it constitutes a di�erent norm whose unit ball is
an ellipsoidal (egg-shaped) region.

2.3 Di�erentials and gradients

The gradient of a function on Rn is usually de�ned using partial derivatives. In this section we
will see that a di�erentiable function on a vector space V always has a well-de�ned “di�eren-
tial” at every point, which is an element of the dual space V∗. However, to de�ne the gradient
requires choosing an isomorphism between V and V∗; hence, the gradient of a multivariate func-
tion depends on the choice of inner product structure for the vector space on which the function
is de�ned.

De�nition 2.8. If (V, ‖ · ‖) is a normed vector space, a function g : V → R is said to vanish to �rst
order at 0 if g(x)

‖x‖ → 0 as ‖x‖ → 0, uniformly in x. More precisely, g vanishes to �rst order at 0 if
for every ε > 0 there exists a δ > 0 such that g(x)

‖x‖ < ε whenever ‖x‖ < δ.

De�nition 2.9. If (V, ‖ · ‖) is a normed vector space, S ⊆ V , and f : V → R, we say that f is
di�erentiable at a point x ∈ S if there exists a linear function dfx ∈ V∗, called the di�erential of f
at x, such that

∀y f (x + y) = f (x) + dfx(y) + g(y),

where the remainder g(y) vanishes to �rst order at 0. If f is di�erentiable at every point of S , we
simply say that f is di�erentiable.

The following lemma explains the relationship between di�erentials and subdi�erentials of con-
vex functions.

Lemma 2.7. If f is a convex function and f is di�erentiable at x, then the subdi�erential ∂ f (x) at
the point x is the one-element set {dfx}.

Proof. Let g(y) = f (x+y)− f (x)−dfx(y). From the De�nition 2.9 we know that g vanishes to �rst
order at 0. On the other hand, g is convex because it is a convex function, minus a constant, minus
a linear function. To complete the proof of the lemma it su�ces to prove that the subdi�erential
of g at 0 is a singleton set consisting of 0 ∈ V∗, i.e. the constant function that maps every vector
in V to 0. From De�nition 2.3 we know that the subdi�erential ∂g(x) is a nonempty set. To prove
it equals {0}, let h be any nonzero element of V∗ and we will show h < ∂g(0). Suppose y is a
vector such that h(y) , 0. Replacing y with −y if necessary, we can assume h(y) > 0. Now, since
h ∈ ∂g(0), we have g(z) ≥ g(0) + h(z − 0) = h(z) for all vectors z. In particular, letting z = ty for
t ∈ R, we �nd that g(z) = th(y) and

lim
t→0

g(z)
‖z‖

= lim
t→0

t h(y)
t ‖y‖

=
h(y)
‖y‖

> 0.

This contradicts the fact that g vanishes to �rst order at 0. �
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Closely related to the di�erential of a function is its gradient, which encodes information about
the derivative of f in the form of a vector in V rather than V∗.

De�nition 2.10. If V is a vector space, 〈·, ·〉 is a non-degenerate inner product, and f : V → R is
a function di�erentiable at x, the gradient of f at x, denoted by∇fx, is the image of the di�erential
dfx under the isomorphism V∗ → V induced by the inner product.

When V = Rn with the standard inner product structure, these de�nitions accord with the usual
de�nitions given using partial derivatives. The di�erential of f is the row vector

dfx =
[ ∂ f
∂x1

∂ f
∂x2
···

∂ f
∂xn

]
and the gradient ∇fx is the column vector obtained by transposing this row vector.

Example 2.1. This example illustrates the di�erence between the gradient with respect to the
standard inner product and the gradient with respect to a non-standard inner product. Let V = R2

and consider the function f : V → R de�ned by f (x1, x2) = 4x2
1 + x2

2.
To calculate the di�erential of f at x =

[ x1
x2

]
, we expand f (x + y) in powers of y1 and y2:

f (x+y) = 4(x1+y1)2+(x2+y2)2 = (4x2
1+x2

2) + (8x1y1+2x2y2) + (4y2
1+y2

2) = f (x)+(8x1y1+2x2y2)+g(y),

where the function g(y) = 4y2
1 + y2

2 vanishes to �rst order at 0. This indicates that

dfx(y) = 8x1y1 + 2x2y2.

The right side of the equation is a linear function of y ∈ R2. In other words, the di�erential of f
an element of (R2)∗, as expected.
The gradient of f with respect to the standard inner product is obtained by stacking the two
partial derivatives of f into a vector.

∇fx =

[
8x1

2x2

]
.

What about the gradient of f with respect to the non-standard inner product de�ned by

〈x, y〉 = 2x1y1 + x2y2.

The gradient ∇fx is de�ned to be the image of dfx under the isomorphism (R2)∗ → R2 induced
by the inner product. In other words, ∇fx is the unique vector z =

[ z1
z2

] that satis�es

∀y =
[ y1

y2

]
〈z, y〉 = 8x1y1 + 2x2y2.

Recall that the inner product 〈z, y〉 is de�ned to be 2z1y1 + z2y2. So, for all y ∈ R2, we require the
equation

8x1y1 + 2x2y2 = 2z1y1 + z2y2

to hold. Equating the coe�cients of y1 and y2, we may conclude that z1 = 4x1 and z2 = 2x2.
Hence,

∇fx =

[
4x1

2x2

]
.
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2.4 Gradient descent

Minimizing a real-valued function on a vector space is one of the most important optimization
problems in Computer Science. Among other uses, it underlies the training of machine learning
models: in that application, each vector in the vector space represents a di�erent parameter set-
ting for the model, and the function to be minimized is called a “loss function” and is interpreted
as a measure of how poorly the model with those parameters �ts the training data.
The most popular family of algorithms for minimizing real-valued functions on vector spaces is
based on a principle called gradient descent. These are iterative algorithms that take a sequence
of small steps, each in a direction that locally improves the function value. In this section we
introduce the gradient descent algorithm and analyze its performance when minimizing a convex
function. Many of the most important contemporary applications of gradient descent involve
non-convex functions, but the performance guarantees for gradient descent are much weaker
when the function being optimized is non-convex.
The most elementary gradient descent algorithm has a “step size” parameter, η. The algorithm is
as follows.

Algorithm 1 Gradient descent with �xed step size
Parameters: Starting point x0 ∈ R

n, step size η > 0, number of iterations T ∈ N.

1: for t = 0, . . . ,T − 1 do
2: xt+1 = xt − η∇fxt

3: end for
4: Output x̂ = arg min{ f (x0), . . . , f (xT )}.

We will analyze the behavior of gradient descent under the following assumptions.

1. V has a positive de�nite inner product, 〈·, ·〉. Gradients and norms of vectors are de�ned
with respect to this inner product.

2. f is convex.

3. For some L < ∞ called the Lipschitz constant of f , the following inequality is satis�ed by
all x, y ∈ V .

| f (x) − f (y)| ≤ L · ‖x − y‖.

Let x∗ denote a point in V at which f is minimized. The analysis of the algorithm will show
that if ‖x∗ − x0‖ ≤ D then gradient descent (Algorithm 1) with η = ε/L2 �nds a point x̂ where
f (x̂) ≤ f (x∗) + ε after T = L2D2/ε2 iterations. The key parameter in the analysis is the squared
distance ‖xt − x∗‖2. The following lemma does most of the work, by showing that this parameter
must decrease if f (xt) is su�ciently far from f (x∗).

Lemma 2.8. ‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2η( f (xt) − f (x∗)) + η2L2.
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Proof. Letting x = xt we have

‖xt+1 − x∗‖2 = ‖x − x∗ − η∇fx‖
2

= ‖x − x∗‖2 − 2η 〈∇fx, x − x∗〉 + η2‖∇fx‖
2

= ‖x − x∗‖2 + 2ηdfx(x∗ − x) + η2‖∇fx‖
2

≤ ‖x − x∗‖2 + 2η( f (x∗) − f (x)) + η2‖∇fx‖
2.

The proof concludes by observing that the L-Lipschitz property of f implies ‖∇fx‖ ≤ L. �

Now, to complete the analysis of gradient descent, let Φ(t) = ‖xt − x∗‖2; we will refer to Φ as the
“potential function” and to Φ(t) as the “potential at time t”. When η = ε/L2, the lemma implies
that for every t such that f (xt) > f (x∗) + ε, the decrease in potential at time t is bounded below
by

Φ(t) − Φ(t + 1) > 2ηε − η2L2 = ε2/L2. (5)
Since Φ(0) ≤ D and Φ(t) ≥ 0 for all t, the equation (5) cannot be satis�ed for all 0 ≤ t ≤ L2D2/ε2.
Hence, if we run gradient descent for T = L2D2/ε2 iterations, at least one of the iterates xt

satis�es f (xt) ≤ f (x∗) + ε, and hence the algorithm will set x̂ to be a point that satis�es such that
f (x̂) ≤ f (x∗) + ε.
A few observations about this analysis of gradient descent are in order.

1. The upper bound on the number of iterations does not depend on the dimension of the vec-
tor space. The bound is L2D2/ε2, which depends on the Lipschitz constant of the function
(namely L) and on the distance of the starting point x0 from the optimal point x∗ (namely
D), but the number of iterations required to �nd an ε-optimal point does not tend to in-
�nity as the dimension increases, provided those other parameters do not increase with
dimension. This partially explains why gradient descent is such a useful algorithm for con-
temporary optimization problems with billions of parameters, such as training very large
neural networks. To be honest, though, in those applications it is quite unlikely that the
initial distance from optimality, D, would remain constant as the number of parameters
tends to in�nity.

2. The number of iterations depends quadratically on 1/ε, which is quite bad. Later in the
course we will see a variant of gradient descent that needs only O(log(1/ε)) iterations,
when the gradient ∇fx is neither too rapidly nor too slowly varying as x varies.

3. As noted in Section 2.3, the gradient (unlike the di�erential) is only well-de�ned in the
context of an inner product structure on V . Under a di�erent choice of inner product, the
gradient of a function would be calculated in a di�erent way, which would cause gradient
descent to behave di�erently. This can be seen by plotting the iterations of gradient descent
when minimizing a function such as f (x) = 4x2 + y2, whose level sets are ellipses. The
gradient vectors with respect to the standard inner product are perpendicular to the level
sets. The negative gradient (i.e., the direction of the steps taken by the gradient descent
algorithm) is directed toward a point on the major axis of the ellipse but not toward its
center. Hence, gradient descent with respect to the standard inner product will tend to zig-
zag back and forth across the major axis as it makes it way toward the global minimum of
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f , repeatedly overshooting in the x direction and then correcting its course, while making
steady progress in the y direction. If, instead of the standard inner product, one takes the
gradient of f with respect to the non-standard inner product

〈x, y〉 = 2x1y1 + x2y2,

then the gradient descent algorithm makes steady progress in both the x and y directions.
Thus, while gradient descent using the standard inner product is adequately e�cient, if
one knows something about the geometry of the function being optimized then choosing
an inner product adapted to the geometry of the problem can make gradient descent even
more e�cient.

3 Geometry in high dimensions

When visualizing high-dimensional vector spaces, it is important to keep in mind some stark
quantitative di�erences between low-dimensional and high-dimensional geometry. In high di-
mensions, when we circumscribe a cube around a sphere, the cube’s volume exceeds that of the
sphere by a greater-than-exponential factor. (In other words, as the dimension increases, the
volume ratio of the two shapes grows faster than any exponential function of the dimension.)
Almost all of the volume of a high-dimensional ball is located in a thin shell near the surface. In
addition, almost all of the ball’s volume is located near the equator. Finally, if we sample m vectors
at random from a d-dimensional ball and m is subexponential in d, then with high probability all
of the vectors are nearly orthogonal to one another.

3.1 Preliminaries

We will derive all of the geometric facts cited above using a few basic facts from geometry and
analysis.
In the vector space Rd there is a function denoted by Vold(·) that assigns to certain subsets S ⊆ Rd

a non-negative (possibly in�nite) number Vold(S ) called the d-dimensional volume of S . The sets
for which Vold(S ) is de�ned are called measurable sets and we will not give a de�nition here, but
we will note that any (topologically) closed subset of Rd is measurable, and the collection of
measurable subsets is closed under complementation and under taking unions or intersections
of countably many sets. The d-dimensional volume of a set S contained in a d-dimensional
hyperplane inRn (i.e., a set obtained from a d-dimensional linear subspace by translation) because
Furthermore, the d-dimensional volume satis�es the following properties.

1. The d-dimensional volume of a set is invariant under translations and rotations.

2. When we scale a set by a scale factor λ > 0, its d-dimensional volume is scaled by λd. In
other words, if we de�ne

λ · S = {λ · x | x ∈ S }

and if S is measurable, then λ · S is measurable and Vold(λ · S ) = λd · Vold(S ).
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3. If A and B are disjoint measurable sets, then Vold(A∪B) = Vold(A)+Vold(B).More generally,
if A1, A2, . . . is an in�nite sequence of pairwise disjoint measurable sets, then

Vold

 ∞⋃
i=1

Ai

 =

∞∑
i=1

Vold(Ai).

De�ne a d-dimensional hyperplane in Rn to be a set obtained from a d-dimensional linear sub-
space by translation. For every d-dimensional hyperplane W in Rn we can let w : W → Rd be
any (Euclidean) distance-preserving bijection and de�ne Vold(·) on measurable subsets of W by
specifying that Vold(S ) = Vold(w(S )). This de�nition of Vold(S ) doesn’t depend on the choice of
distance-preserving bijection, because Vold is invariant under translations and rotations.
The volumes of d-dimensional and (d − 1)-dimensional sets are related by the following integral
formula.

Fact 3.1. If S ⊆ Rd is measurable and Ws = {x ∈ Rd | x1 = s}, then

Vold(S ) =

∫ ∞

−∞

Vold−1(S ∩Ws) ds.

Using Fact 3.1 we can derive the formula for the volume of a cone. If T is a subset ofRd−1 and h > 0,
then a cone of height h with base T is any set congruent to the following subset of Rd = R×Rd−1:

Cone(T, h) = {x = ((1 − t)h, ty) | 0 ≤ t ≤ 1, y ∈ T }.

Fact 3.2. If T ⊆ Rd−1 is measurable, the volume of Cone(T, h) is h
d Vold−1(T ).

Proof. The intersection Cone(T, h)∩Ws is empty unless 0 ≤ s ≤ h, and then its (d−1)-dimensional
volume is td ·Vold−1(T ), where t is the solution to the equation s = (1−t)h; in other words, t = 1− s

h .
Using Fact 3.1 and the substitution t = 1 − s

h we obtain

Vold(Cone(T, h)) =

∫ h

0

(
1 − s

h

)d
· Vold−1(T ) ds = Vold−1(T ) ·

∫ 1

0
h td dt = h

d Vold−1(T ),

as claimed. �

Finally, in evaluating the volumes of high-dimensional sets it will be useful for us to be able
to estimate the factorial function up to a constant factor. The following lemma furnishes the
required estimate.

Lemma 3.3. For any positive integer n,

√
en

(n
e

)n
< n! < e

√
n
(n
e

)n
. (6)
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Proof. Upon taking logarithms, the inequalities stated in the lemma become equivalent to

n ln(n) − n + 1
2 ln(n) + 1

2 < ln(n!) < n ln(n) − n + 1
2 ln(n) + 1, (7)

and we will prove the stated inequalities in this equivalent form. For all k and all t ∈ (0, 1) we
have

ln(k) + t (ln(k + 1) − ln(k)) < ln(k + t) < ln(k) + t
k ,

where the left inequality is derived from the fact that the logarithm function is strictly concave,
and the right inequality is derived from strict concavity along with the fact that the derivative of
the natural logarithm at k is 1

k . Integrating with respect to t and applying the substitution x = k+t,
we �nd that

ln(k) + 1
2 (ln(k + 1) − ln(k)) <

∫ k+1

k
ln(x) dx < ln(k) + 1

2k . (8)

Now, summing over k = 1, . . . , n − 1,

ln(n!) − 1
2 ln(n) <

∫ n

1
ln(x) dx < ln(n!) − ln(n) +

1
2

n−1∑
k=1

1
k
< ln(n!) − 1

2 ln(n) + 1
2 , (9)

where we have used the fact that ∑n−1
k=1

1
k < ln(n) + 1. (To derive that inequality, write the sum on

the left as 1 +
∑n−1

k=2
1
k and note that this is bounded above by 1 +

∫ n−1

1
dt
t .) Rearranging terms in (9)

and using the fact that
∫ n

1
ln(x) dx = n ln(n) − n + 1, we derive

n ln(n) − n + 1
2 ln(n) + 1

2 < ln(n!) < n ln(n) − n + 1
2 ln(n) + 1 (10)

as claimed. �

3.2 Volume distribution near boundary

In this section we will explore a simple consequence of the rule for how Vold transforms under
scaling, Vold(λ · S ) = λd · Vold(S ). We’ll see that this implies almost all of a high-dimensional
sphere’s volume is concentrated in a thin shell near the surface of the sphere.

Proposition 3.4. Let Bd(r) denote the Euclidean ball of radius r centered at 0 ∈ Rd, i.e. the ball of
radius r in the L2 norm. For any c > 0, the set of points whose distance from the boundary of Bd(1)
is greater than c/d constitutes less than e−c fraction of the ball’s volume.

Proof. If c ≥ d, then the set of points whose distance from the boundary of B = Bd(1) is greater
than c/d is empty. Otherwise, the set is equal to the interior of the ball Bd(1 − c

d ), so its volume
is equal to (

1 − c
d

)d
Vold(B).

To �nish up, we use the inequality 1 − x < e−x which is valid for all non-zero x ∈ R. Applying
this inequality with x = c

d , we �nd that(
1 − c

d

)d
<

(
e−c/d

)d
= e−c

which completes the proof of the proposition. �
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3.3 Estimating the volume of the Euclidean ball

Let Bd
1(r), Bd

2(r), Bd
∞(r) denote the unit balls of radius r in Rd under the L1, L2, and L∞ norms, re-

spectively. In this section we will show that the volume of Bd
2(1) is d−d/2+o(d), where the expression

o(d) in the exponent indicates an error term that grows sublinearly in d, as d → ∞. To do so, we
will inscribe an L∞ ball inside B = Bd

2(1) and circumscribe an L1 ball around it, and we’ll bound
the volume of B from below and above by these inscribed and circumscribed shapes.

Lemma 3.5. For any dimension d ≥ 1, Bd
∞(d−1/2) ⊂ Bd

2(1) ⊂ Bd
1(d1/2).

Proof. Every x ∈ Bd
∞(d−1/2) satis�es |xi| ≤ d−1/2 for i = 1, 2, . . . , d, which implies

d∑
i=1

x2
i ≤

d∑
i=1

1
d = 1,

hence x ∈ Bd
2(1). To prove Bd

2(1) ⊆ Bd
1(d1/2), consider any x ∈ Bd

2(1) and let y denote a vector in
{±1}d such that xiyi ≥ 0 for all i; in other words, yi = −1 if xi < 0, yi = 1 if xi > 0, and yi is an
arbitrary element of {±1} if xi = 0. We have

‖x‖1 =

d∑
i=1

|xi| =

d∑
i=1

xiyi ≤ ‖x‖2‖y‖2,

where the last step is the Cauchy-Schwartz Inequality. Recalling that ‖x‖2 ≤ 1 and calculating
that ‖y‖2 = d1/2, we �nd that ‖x‖1 ≤ d1/2, as claimed. �

Lemma 3.6. The unit balls of the L1 and L∞ norms Rd have volumes

Vold(Bd
1(1)) =

2d

d!
, Vold(Bd

∞(1)) = 2d.

Proof. The L∞ ball Bd
∞ is simply the set [−1, 1]d of vectors whose coordinates are all between −1

and 1. This is a product of d intervals of length 2, so its volume is 2d.
To estimate Vold(Bd

1), �rst dissect Bd
1 into two congruent pieces: one consisting of the vectors in

Bd
1 whose �rst coordinate is non-negative, and the other consisting of the vectors in Bd

1 whose
�rst coordinate is non-positive. (These sets have a non-empty intersection consisting of vectors
whose �rst coordinate is zero, but the d-dimensional volume of this intersection is zero.) Both
pieces of this dissection are congruent to Cone(Bd−1, 1). Hence,

Vold(Bd) = 2 Vold(Cone(Bd−1, 1)) =
2
d

Vold−1(Bd−1).

Solving this recurrence with the base case Vol1(B1) = 2, we obtain Vold(Bd) = 2d

d! . �

Proposition 3.7. The volume of the Euclidean unit ball in Rd satis�es(
2
√

d

)d

< Vold(Bd
2(1)) <

(
2e
√

d

)d

. (11)
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Proof. By Lemma 3.5 we have Vold(Bd
∞(d−1/2)) < Vold(Bd

2(1)) < Vold(Bd
1(d1/2)). Applying the rule

that scaling a set in Rd scales its volume by λ to the formulas for Vold(Bd
∞(1)) and Vold(Bd

1(1)), we
can calculate the volumes of Bd

∞(d−1/2) and Bd
1(d1/2) exactly and conclude that

2d · d−d/2 < Vold(Bd
2(1)) <

2d · dd/2

d!
. (12)

From Lemma 3.3 we know that 1
d! < ( e

d )d, and substituting this upper bound for 1
d! into inequal-

ity (12), we obtain inequality (11). �

Above we have estimated the volume of a Euclidean unit ball by “sandwiching” it between the
unit balls of the L∞ and L1 norms. A slightly more complicated way to obtain qualitatively similar
estimates is to sandwich the d-dimensional ball between a cylinder and a cone. The bene�t of the
latter approach is that it enables us to estimate (within a constant factor) to volume ratio of the
unit balls in d and d − 1 dimensions, which will be helpful in the following section.

Lemma 3.8. For any ε > 0, the Euclidean unit ball B = Bd
2(1) is contained in the cone C(ε) ={

x ∈ Rd
∣∣∣∣∣εx1 +

√
(1 − ε2)(x2

2 + x2
3 + · · · + x2

d) ≤ 1
}
.

Proof. For any x ∈ B, apply the Cauchy-Schwartz inequality to the two-dimensional vectors

a =

[
a1

a2

]
=

 x1√
x2

2 + · · · + x2
d

 , b =

[
ε

√
1 − ε2

]
.

Observe that ‖a‖2 = ‖x‖2 ≤ 1 since x ∈ B, and that ‖b‖2 = 1. Hence, the Cauchy-Schwartz
Inequality implies 〈a,b〉 ≤ 1. Expressing this inequality in terms of the coordinates of the vector
x, we �nd that x satis�es the inequality de�ning C(ε). �

Lemma 3.9. Let Bd = Bd
2(1) and Bd−1 = Bd−1

2 (1) denote the Euclidean unit balls in d and d − 1
dimensions respectively. The volumes Vold(Bd) and Vold−1(Bd−1) obey the following relation:

2
√

e
·

Vold−1(Bd−1)
√

d
≤ Vold(Bd) ≤ 2

√
e ·

Vold−1(Bd−1)
√

d
. (13)

Proof. Let A denote the cylinder

A =

{
x ∈ Rd

∣∣∣∣∣x2
1 ≤

1
d
, x2

2 + x2
3 + · · · + x2

d ≤
d − 1

d

}
and observe that A ⊂ Bd since every x ∈ A satis�es x2

1 + x2
2 + · · · + x2

d ≤
1
d + d−1

d = 1. The height
of cylinder A is 2

√
d

and its base is a (d − 1)-dimensional ball of radius

r = (1 +
1

d − 1
)−1/2 > e−1/(2d−2)

so its volume is
Vold(A) =

2
√

d
rd−1 Vold−1(Bd−1) >

2
√

e
·

Vold−1(Bd−1)
√

d
. (14)
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Recall the in�nite cone C(ε) de�ned in Lemma 3.8, and let −C(ε) denote the set {−x | x ∈ C(ε)}.
The intersection C = C(ε) ∩ −C(ε) is a union two cones, each of height 1

ε
, whose common base

is a (d − 1)-dimensional ball whose radius is (1 − ε2)−1/2. If we set ε = 1
√

d
then

(1 − ε2)−1/2 =

(
1 −

1
d

)−1/2

=

(
1 +

1
d − 1

)1/2

< e1/2(d−1).

Vold(C) =
2
d
·

1
ε
·
(
1 − ε2

)−(d−1)/2
· Vold−1(Bd−1) <

2
√

e
√

d
· Vold−1(Bd−1) (15)

Since Lemma 3.8 tells us that Bd ⊂ C(ε) and Bd ⊂ −C(ε), we have B ⊂ C. Combining the set-
theoretic relations A ⊆ B ⊆ C with the volume bounds derived in Inequalities (14) and (15), we
obtain the relation (13) asserted in the lemma statement. �

3.4 Volume distribution near equator

As one consequence of estimating the Euclidean ball’s volume, we can prove that most of the
volume is located in a thin layer near the equator. In fact, letting B = Bd

2(1) denote the Euclidean
unit ball in Rd, if Li(w) = {x ∈ B | −w ≤ xi ≤ w} denotes a layer of width 2w centered on
the equatorial disc {x ∈ B | xi = 0}, then we will prove that for any c > 0, the complement of
Li = Li

(√
c/d

)
contains only 2e−βc fraction of the volume of B, for some constant β > 0.

As a warm-up before proving this exponentially small upper bound on the volume of B \ Li, let
us prove a simpler upper bound showing that for any c > 1, the set Ci = B \ Li(

√
c/d) contains

at most 1
c of the volume of B. The key observation is that every point x ∈ B belongs to fewer

than d/c of the sets C1,C2, . . . ,Cd. Indeed, if x ∈ Ci then x2
i > c/d, and the constraint ∑d

i=1 x2
i ≤ 1

ensures that fewer than d/c indices i satisfy the inequality x2
i > c/d. Since C1,C2, . . . ,Cd are

subsets of B and every point of B belongs to fewer than d/c of them, their combined volume is
less than d

c Vol(B). Since all of the sets are congruent to each other, they all have the same volume,
which must therefore be less than 1

c Vol(B).

Proposition 3.10. Let B = Bd
2(1) denote the Euclidean unit ball, and for some c ≥ 4 let L =

Li(
√

c/d) denote the layer of width 2
√

c/d around the equator. The volume of B \ L satis�es

Vold(B \ L) <
√

e
c

e−c/2 Vold(B).

Proof. If c ≥ d then B \ L is an empty set and there is nothing to prove. Assume henceforth that
c < d. Then the set B \ L consists of two congruent spherical caps. The base of each spherical
cap is a (d − 1)-dimensional ball Bd−1

2 (r) whose radius r satis�es r2 + c
d = 1. For c ≥ 4 this implies

r < 1 − c
2(d−1) < e−c/2(d−1). Applying Lemma 3.8 with ε =

√ c
d , we know that B is contained in

the in�nite cone C(ε). The portion of this cone sitting above the hyperplane {x1 = ε} has base
consisting of the points x such that x1 = ε and x2

2 + x2
3 + · · ·+ x2

d ≤ 1−ε2 = 1− c
d = r2; this matches

the base of the spherical cap. Hence, the volume of the spherical cap is less than the volume of
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the cone, which is

1
d
·

(
1
ε
− ε

)
· rd−1 · Vold−1(Bd−1) <

√
1
cd
· e−c/2 · Vold−1(Bd−1) <

1
2

√
e
c

e−c/2 · Vold(Bd),

where the last inequality follows from Lemma 3.9. �

3.5 Random high-dimensional vectors are nearly orthogonal

In d dimensions, if non-zero vectors z1, . . . , zk are pairwise orthogonal, meaning that the dot
product of any two of them is zero, then the vectors are linearly independent2 and thus k must be
less than or equal to d. In this section we will see that the situation is completely di�erent if we
require the vectors to be nearly orthogonal, meaning that the angle between any two of them lies
in the interval from π

2 −ε to π
2 +ε radians, for some arbitrarily small ε > 0. We will prove that the

maximum number of pairwise nearly orthogonal vectors in d dimensions grows exponentially
with d, for any �xed ε > 0. The proof that we present shows, in fact, that if m < e−ε

2d/16, then
with high probability a random set of m vectors sampled independently and uniformly at random
from the unit ball Bd in d-dimensional Euclidean space will be pairwise nearly orthogonal. This is
an illustration of a powerful technique called the probabilistic method in which one proves that an
object having a certain property exists by showing that a random object possesses the property
with positive probability. (In the case presented here, the “object” in question is a collection of m
vectors in Rd, and the property is pairwise near orthogonality.) In many cases, including this one,
directly constructing an object with the required property is much more di�cult than proving
the existence of such an object using the probabilistic method.
At the heart of our proof that a random m-tuple of vectors in Bd are likely to be pairwise nearly
orthogonal is the following lemma concerning the probability that two random vectors form an
angle that di�ers from π

2 by more than ε.
Lemma 3.11. Suppose x, y are two random vectors sampled independently and uniformly at random
from Bd. Let θ ∈ [0, π] denote the angle formed between x and y. For any ε such that 0 < ε < 1

8 and
any d > 4e

ε2 , the probability that |π2 − θ| > ε is less than 2e−ε
2d/8.

Proof. The joint distribution of the pair x, y is rotation-invariant, so the conditional distribution of
the angle θ given that y is parallel to the standard basis vector e1 is the same as the unconditional
distribution of θ. Furthermore, since θ depends only on the orientations of x and y, not their
lengths, we can condition on the event y = e1 without a�ecting the distribution of θ.
Recalling now that the dot product of two vectors is equal to the product of their lengths, times
the cosine of the angle between them, we �nd that our assumption that y = e1 allows us to
calculate the cosine of θ as follows.

cos(θ) =
〈x, y〉
‖x‖2‖y‖2

=
x1

‖x‖2
. (16)

2One way to see this must be the case is to consider the linear function fi(x) = 〈zi, x〉 for i = 1, 2, . . . , k. By
assumption, f(x) evaluates to zero at z j for any j , i, hence f(x) = 0 whenever x is a linear combination of {z j | j , i}.
However, f(zi) = 〈zi, zi〉 > 0, so zi is not a linear combination of {z j | j , i}. Since this holds for every i, we may
conclude that z1, . . . , zk are linearly independent as claimed.
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Using the identity sin
(
π
2 − θ

)
= cos(θ), we �nd that the event |π2 − θ| > ε is equivalent to the event

| sin(θ)| > sin(ε).

The inequality sin(ε) > ε/2 is valid whenever 0 < ε < 1
8 , hence

Pr
(∣∣∣∣∣π2 − θ

∣∣∣∣∣ > ε) ≤ Pr
(
|x1|

‖x‖2
>
ε

2

)
≤ Pr (‖x‖2 < 1 − ε) + Pr

(
|x1| > (1 − ε) ·

ε

2

)
. (17)

The second inequality follows because the inequality |x1 |

‖x‖2
> ε

2 is only satis�ed when at least one
of the following two events happens: either ‖x‖2 < 1 − ε or |x1| > (1 − ε) · ε2 . Therefore the event
|x1 |

‖x‖2
> ε

2 is contained in the union of the latter two events, and its probability is bounded above
by the sum of their probabilities.
Proposition 3.4 implies that the probability of the event ‖x‖2 < 1−ε is less than e−εd,which is less
than e−ε

2d/8 due to our assumption that ε < 1/8. Applying Proposition 3.10 with c = ε2d/4, and
hence

√
c/d = ε/2, we �nd that the probability of the event |x1| > ε/2 is less than

√
4eε2de−ε

2d/8,
which is less than e−ε

2d/8 due to our assumption that d > 4e
ε2 . To sum up, we have shown that both

probabilities on the right side of (17) are less than e−ε
2d/8, hence the probability on the left side is

less than 2e−ε
2d/8. �

Proposition 3.12. For every ε, d,m satisfying 0 < ε < 1
8 , d > 4e

ε2 , m < eε
2d/16, if vectors x1, . . . , xm

are drawn independently and uniformly at random from the Euclidean unit ball Bd ⊂ Rd, then with
probability at least 1

2m every pair of vectors in the set {x1, . . . , xm} forms an angle between π
2 − ε and

π
2 + ε.

Proof. We can use Lemma 3.11 to put an upper bound on the expected number of pairs xi, x j that
form an angle θ such that |π2 − θ| > ε. The probability that any one such pair forms such an angle
is less than 2e−ε

2d/8, which is less than 2
m2 by our assumption on m. The number of unordered

pairs {xi, x j} with i , j is (
m
2

)
=

m2 − m
2

.

By linearity of expectation, the expected number of (unordered) pairs {xi, x j} that form an angle
θ not lying between π

2 − ε and π
2 + ε is less than

2
m2 ·

m2 − m
2

= 1 −
1

2m
.

The proposition follows, since a non-negative integer-valued random variable must always sat-
isfy the inequality E[X] ≥ Pr(X > 0). �

4 Matrices

A matrix is a two-dimensional array of real numbers, M, with entries denoted by Mi j. Here, the
ranges of i and j are �nite intervals [m] = {1, 2, . . . ,m} and [n] = {1, 2, . . . , n}, where m and n are
the number of rows and columns, respectively, of the matrix M.
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Matrices play at least three distinct important roles in mathematics, computer science, and data
science.

1. They encode information that takes the form of a two-dimensional array. A running exam-
ple in this section will be a matrix encoding course enrollments in a department, with two
rows that tabulate the number of undergraduate and graduate students, respectively, and
with one column for each course o�ered by the department. In this example, the column
for course j would contain entries M1 j and M2 j encoding the number of undergraduates
and grad students, respectively, enrolled in course j.

2. An m × n matrix can encode a linear transformation from Rn to Rm. In this encoding, the
matrix M encodes the function T : Rn → Rm where T (x) is the vector y ∈ Rm whose
coordinates are de�ned, for each i ∈ [m] by the equation

yi =

n∑
j=1

Mi jx j.

3. An m×n matrix can also encode a bilinear function on Rm×Rn. A function A : Rm×Rn → R
is called bilinear if it satis�es

∀x, y ∈ Rm, z ∈ Rn A(ax + by, z) = aA(x, z) + bA(y, z)
∀x ∈ Rm, y, z ∈ Rn A(x, ay + bz) = aA(x, y) + bA(x, z).

Equivalently, A is bilinear if and only if for every y ∈ Rn the function f (x) = A(x, y) is a
linear function of x, and for every x ∈ Rm the function g(y) = A(x, y) is a linear function of
y. We say that matrix M encodes the bilinear function A : Rm × Rn → R if

A(x, y) =

m∑
i=1

n∑
j=1

Mi jxiy j.

4.1 Change of basis

One of the tricky things about working with matrices is that we often want to write a matrix
representing “the same thing” as M using a di�erent basis. Doing this can be confusing because
the way to rewrite M depends on what “thing” we are encoding using M.

Example 4.1. Let us return to our running example of a matrix M with 2 rows and n columns,
representing the enrollments of n courses by noting the number of undergraduate students in the
�rst row and the number of graduate students in the second row. A di�erent matrix representing
the same information might have the total number of students in the �rst row and the number
of graduate students in the second row. Let us call this second matrix M′. Its relationship to M
can be expressed by the formulas

M′
1 j = M1 j + M2 j, M′

2 j = M2 j
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or more succinctly by the equation
M′ =

[ 1 1
0 1

]
M.

The matrix B =
[ 1 1

0 1
] is a “change of basis” matrix describing how the entries of M transform

when we rewrite the data in the format of M′.
To illustrate the subtlety of working with change-of-basis matrices, let us now suppose that the
university’s budget model credits the department with $2 for every undergraduate student and
$1 for every graduate student. (These aren’t realistic numbers, we’re just using them for the sake
of this example.) Consider course j whose enrollment is represented in the �rst basis by the
vector m j =

[
M1 j
M2 j

]
and in the second basis by the vector m′ j =

[
M′1 j
M′2 j

]
. The department’s revenue

from course j can be calculated by the expression [ 2 1 ]m j ($2 for every undergraduate student
plus $1 for every graduate student), but it can also be calculated by the expression [ 2 −1 ]m′ j ($2
for every student, minus $1 for every graduate student). Evidently, the change of basis which
transforms m j to m′ j also transforms the linear function represented by the row vector [ 2 1 ] to
the one represented by the row vector [ 2 −1 ], even though

[ 2 1 ] ·
[ 1 1

0 1
]
, [ 2 −1 ] and [ 1 1

0 1
]
·
[ 2

1
]
,

[ 2
−1

]
.

What’s going on here is that a linear function represented in the �rst basis by a row vector r
becomes represented in the second basis by a row vector r′ = rB−1. A change of basis which
operates on vectors via left multiplication by B operates on linear functions (represented as row
vectors) via right multiplication by B−1. If we choose to represent a linear function of m as an
inner product 〈c,m〉, where c is a column vector, then the change-of-basis formula becomes even
more obscure: the change of basis that transforms m to Bm acts on c by transforming it into
(B−1)Tc.

To derive the correct change-of-basis formulae for di�erent types of vectors and matrices it is
useful to introduce the notion of a based vector space. This is not a widely used mathematical
term, but just a useful term we are using in this course to simplify the discussion of how to
account for a change of basis.

De�nition 4.1. A based vector space is a �nite-dimensional vector space V together with a choice
of isomorphism β : Rn → V for some n ∈ N.

Recall that Rn has a standard basis e1, . . . , en where ei has a 1 in its ith coordinate and 0 in every
other coordinate. If V is a based vector space then the vectors β(e1), . . . , β(en) constitute a basis of
V . Conversely, if v1, . . . , vn is an ordered n-tuple of vectors that form a basis of V , then there is a
unique isomorphism β : Rn → V such that β(ei) = vi. Thus, giving a vector space V the structure
of a based vector space is equivalent to choosing a basis for V and arranging the elements of the
basis into an ordered n-tuple.
For a vector space V whose elements are semantically meaningful (e.g., course enrollments rather
than abstract ordered pairs of numbers), giving V the structure of a based vector space is tanta-
mount to settling on a convention for how to represent elements of V as n-tuples of numbers.
This phenomenon already exists — and is well known — in the context of one-dimensional vec-
tor spaces, where the process of representing physical quantities as numbers requires choosing
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units. For example, it is meaningless to say, “The mass of my textbook is 2.5,” whereas the sen-
tence, “The mass of my textbook is 2.5 kilograms,” is perfectly meaningful. In this case, masses of
physical objects can be interpreted as elements of an abstract one-dimensional vector space V in
which addition represents the operation of combining two disjoint physical objects. Two di�er-
ent choices of units, such as kilograms versus grams, are represented by two di�ered based vector
space structures βkg : R → V and βg : R → V that send the element 1 ∈ R to a one-kilogram
mass and a one-gram mass, respectively. Choosing di�erent based vector space structures for a
higher-dimensional vector space V can be interpreted as a higher-dimensional counterpart to the
process of converting between two di�erent systems of units.

De�nition 4.2. If V is an n-dimensional vector space and β1 : Rn → V and β2 : Rn → V are
two di�erent based vector space structures on V , the linear transformation β−1

2 ◦ β1 : Rn → Rn is
represented by an n × n matrix called the change of basis matrix from β1 to β2.

Example 4.2. Returning to our running example, course enrollments can be interpreted as ele-
ments of an abstract two-dimensional vector space V . When course enrollments are represented
as columns of the matrix M in Example 4.1, this corresponds to choosing a based vector space
structure β1 on V that sends e1 to the element of V represented in matrix M by the column vector[ 1

0
], i.e. a course with one undergraduate and no graduate students. Let us denote this element

of V by u, for “undergraduate”. Meanwhile β1(e2) is the element of V represented in matrix M
by the column vector [ 0

1
], i.e. a course with no undergraduates and one graduate student. Let us

denote this element of V by g, for “graduate”.
The matrix M′ represents course enrollments (i.e., elements of V) in an alternate data format that
corresponds to a di�erent based vector space structure. In this structure, β2(e1) is the element
of V represented in matrix M by the column vector [ 1

0
], i.e. a course with one student in total,

but zero graduate students. This is again the vector u ∈ V . However, β2(e2) is the element of
V represented in matrix M′ by the column vector [ 0

1
], i.e. a course with zero students in total,

but one graduate student! It’s a bit hard to wrap one’s head around what this means, but the
most natural way to interpret it is that adding this vector to a course enrollment represents the
operation of one undergraduate dropping the course and being replaced by a graduate student.
(That operation has zero e�ect on the total number of students, but it increments the number of
graduate students.) In other words, β2(e2) = g − u.

Now, let’s compute the change of basis matrix B. It is a two-by-two matrix whose columns are
Be1 and Be2. We can calculate each column as follows.

Be1 = β−1
2 (β1(e1)) = β−1

2 (u) = β−1
2 (β2(e1)) = e1

Be2 = β−1
2 (β1(e2)) = β−1

2 (g) = β−1
2 (u + (g − u)) = β−1

2 (β2(e1) + β2(e2)) = e1 + e2.

Hence, B =
[ 1 1

0 1
]
, consistent with the change of basis formula for converting matrix M to M′

derived in Example 4.1.

As the preceding example makes clear, when a matrix M represents a data table whose columns
belong to a vector space V , if we change from one basis of V to another, the matrix M is trans-
formed to BM, where B is the change-of-basis matrix. When M represents a linear transformation
from V to W or a bilinear function on V ×W , the rules for how M transforms under a change of
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basis for V or W (or both) can be derived by reasoning about the equations that must be satis�ed
after the change of basis.
For example, suppose V and W are vector spaces of dimensions n and m, respectively. Suppose
V and W each have two di�erent bases, represented by based vector space structures βV1 and
βV2 in the case of V , and by βW1 and βW2 in the case of W . Let BV and BW denote the respective
change of basis matrices. Consider any linear transformation T : V → W and let M1,M2 be the
matrices that represent T with respect to the based vector space structures βV1, βW1 and βV2, βW2,
respectively. Then for all x ∈ V,

T (x) = βW1(M1(β−1
V1(x)))

T (x) = βW2(M2(β−1
V2(x)))

hence

βW1 ◦ M1 ◦ β
−1
V1 = βW2 ◦ M2 ◦ β

−1
V2.

To isolate a formula for M2 we multiply the last equation on the left by β−1
W2 and on the right by

βV2, obtaining
M2 = β−1

W2 ◦ βW1 ◦ M1 ◦ β
−1
V1 ◦ βV2 = BW M1B−1

V . (18)
Example 4.3. We return once more to our running example of course enrollments. Recall that in
Example 4.1, if V is the vector space of course enrollments, we de�ned a linear function V → R
represented in basis βV1 by the row vector r = [ 2 1 ]. When we transform to the basis βV2, the
change-of-basis formula for a linear transformation speci�es that we should transform r to rB−1

V .
This explains the reason why right-multiplication by the inverse of the change-of-basis matrix is
the appropriate way to transform the coe�cient vector of a linear function.

Now let us explore how the matrix representing a bilinear function transforms under change of
basis. Recall that a bilinear function A on Rm × Rn is represented by a matrix M satisfying

A(x, y) =

m∑
i=1

n∑
j=1

Mi jxiy j =

m∑
i=1

xi

n∑
j=1

Mi jy j = 〈x,My〉 .

More generally, if A : V × W → R is a bilinear function and βV , βW are based vector space
structures on V and W , respectively, then the matrix M representing A with respect to these
bases satis�es

∀v ∈ V, winW A(v,w) =
〈
β−1

V (v),Mβ−1
W (w)

〉
.

As before, if V and W each have two based vector space structures, denoted by βV1, βV2 and
βW1, βW2, and the bilinear function A is represented by matrices M1 and M2 with respect to these
two pairs of based vector space structures, then we have the equation

∀vinV, w ∈ W
〈
β−1

V2(v),M2β
−1
W2(w)

〉
=

〈
β−1

V1(v),M1β
−1
W1(w)

〉
.

Let v = βV2(x) and w = βW2(y).

∀x ∈ Rm, y ∈ Rn 〈x,M2y〉 =
〈
β−1

V1(βV2(x)), β−1
W1(βW2(y))

〉
=

〈
B−1

V x, B−1
w y

〉
=

〈
x, (B−1

V )TM1B−1
W y

〉
where the last step used the identity 〈Mx, y〉 =

〈
x,MTy

〉
. Hence M2 = (B−1

V )TM1B−1
W .
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4.2 Adjoints and orthogonality

Taking the transpose of a matrix is an important operation in linear algebra. When the matrix
represents a linear transformation between abstract vector spaces, the linear transformation that
corresponds to the transpose of the matrix is called its adjoint and is de�ned in the following
lemma. Before stating the lemma, we need the following de�nition.

De�nition 4.3. If V is a �nite-dimensional vector space with an inner product 〈·, ·〉V , a based
vector space structure β : Rn → V is said to be compatible with the inner product structure on V
if it satis�es

∀x, y ∈ Rn 〈x, y〉 = 〈β(x), β(y)〉V

where 〈x, y〉 denotes the dot product of x and y, i.e. the standard inner product structure on Rn.

Lemma 4.1. IfV,W are �nite-dimensional vector spaces, each equipped with a non-degenerate inner
product, and T : V → W is a linear transformation, then there is a unique linear transformation
U : W → V called the adjoint of T , that satis�es

∀v ∈ V, w ∈ W 〈Tv,w〉 = 〈v,Uw〉 .

If βV , βW are based vector space structures on V,W that are compatible with their respective inner
products, and MT ,MU are the matrices representing T and its adjoint U , respectively, then MU is the
transpose of MT .

Proof. Because the inner product structures on V and W are non-degenerate, there are isomor-
phisms ιV : V → V∗ and ιW : W → W∗ such that ιV(x) is the linear function f that, when applied
to a vector y ∈ V , yields the inner product f(y) = 〈x, y〉 , and ιW is de�ned similarly using the
inner product on W . Let T ∗ : W∗ → V∗ denote the linear transformation such that for all g ∈ W∗,
T ∗(g) is the linear function f ∈ V∗ de�ned by f(y) = g(T (y)). Let U = ι−1

V ◦ T ∗ ◦ ιW . Then for any
v ∈ V,w ∈ W , if we let f = T ∗(ιW(w)), then

〈v,Uw〉 =
〈
v, ι−1

V (T ∗(ιW(w)))
〉

=
〈
v, ι−1

V (f)
〉

=
〈
ι−1
V (f), v

〉
= f(v) = ιW(w)(Tv) = 〈w,Tv〉 = 〈Tv,w〉 ,

which veri�es that U satis�es the equation de�ning the adjoint of T . To verify that U is unique,
observe that if U′ also satis�es the de�ning equation of the adjoint, then for all v ∈ V, w ∈ W,

〈v,Uw − U′w〉 = 〈v,Uw〉 − 〈v,U′w〉 = 〈Tv,w〉 − 〈Tv,w〉 = 0.

Since v was an arbitrary vector in V and the inner product on V is non-degenerate, this implies
that Uw − U′w = 0. Since w was an arbitrary vector in W , this means U = U′.
Finally, the fact that MU is the transpose of MT can be checked by verifying that the standard inner
product on Rn satis�es 〈Mx, y〉 =

〈
x,MTy

〉
for all vectors x, y ∈ Rn and matrices M ∈ Rn×n. �

A matrix M ∈ Rn×n is called symmetric if M = MT, and it is called orthogonal if MT is the inverse of
M. Based on Lemma 4.1 we can generalize the de�nitions of symmetric and orthogonal matrices
to the setting of abstract inner product spaces as follows.
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De�nition 4.4. If V is a vector space with a non-degenerate inner product and T : V → V is
a linear transformation, we say that T is self-adjoint with respect to the inner product on V if it
equal to its own adjoint. In other words, a self-adjoint linear transformation is one that satis�es
the equation

〈Tx, y〉 = 〈x,Ty〉

for all x, y ∈ V. We say that T is orthogonal with respect to the inner product on V if its adjoint
is T−1. Equivalently, an orthogonal linear transformation is one that satis�es the equation

〈Tx,Ty〉 = 〈x, y〉

for all x, y ∈ V.

4.3 Symmetric positive de�nite matrices

A very important set of square matrices are the symmetric positive de�nite matrices, i.e. the set
of all matrices that represent positive de�nite inner products on Rn. There are a number of equiv-
alent characterizations of symmetric positive de�nite matrices, and all of them are important in
di�erent contexts. In this section we present several equivalent characterizations and prove their
equivalence. A key starting point for the proof is the following observation.

Lemma 4.2. If V in a vector space of dimension n < ∞ with a positive de�nite inner product 〈·, ·〉V ,
then V is isomorphic to Rn with the standard inner product structure. In other words there is a based
vector space structure β : Rn → V such that for all x, y ∈ Rn,

∀x, y ∈ Rn 〈x, y〉 = 〈βx, βy〉V . (19)

Proof. The proof is by induction on n. When n = 0 there is nothing to prove, since V and Rn are
both singleton sets consisting of the vector 0, whose inner product with itself is 0.
For n > 0, let W be an (n − 1)-dimensional subspace of V , equipped with the inner product
structure obtained by restricting 〈·, ·〉V to pairs of vectors in W . There is a linear transformation
T : V → W∗ that maps each vector x ∈ V to the linear function fx : W → R de�ned by
fw(w) = 〈x,w〉V . Let v1, . . . , vn be a basis of V . The vectors T (v1), . . . ,T (vn) ∈ W∗ must be linearly
dependent, since dim(W∗) = dim(W) = n−1. Hence we can express 0 ∈ W∗ as a non-trivial linear
combination

0 =

n∑
i=1

aiT (vi) = T

 n∑
i=1

aivi


where the coe�cients a1, . . . , an are not all equal to zero. Let v =

∑n
i=1 aivi, which is a nonzero

vector in V since v1, . . . , vn is a basis and a1, . . . , an are not all zero. Recalling the de�nition of the
linear transformation T , we see that the equation T (v) = 0 means

∀w ∈ W 〈v,w〉V = 0. (20)

Since the inner product on V is positive de�nite and v , 0, we know that 〈v, v〉V > 0. Rescaling
v if necessary, we can assume 〈v, v〉 = 1. The rescaling doesn’t a�ect the validity of (20).
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The induction hypothesis implies there is an isomorphism βW : Rn−1 → W such that 〈x, y〉 =

〈βWx, βWy〉V for all x, y ∈ Rn−1. Let us now de�ne β : Rn → V by specifying that

β


x1
...

xn

 = βW


x1
...

xn−1

 + xnv.

We must verify that this β satis�es Equation (19). For any x, y ∈ Rn, let x′, y′ denote the vectors
in Rn−1 obtained by extracting the �rst n − 1 coordinates of x and y, respectively. We have

〈βx, βy〉V = 〈βWx′ + xnv, βWy′ + ynv〉V
= 〈βWx′, βWy′〉V + xn 〈v, βWy′〉V + yn 〈βWx′, v〉V + xnyn 〈v, v〉V

Thinking about the four terms on the right side, the induction hypothesis implies that the �rst
term equals 〈x′, y′〉, the second and third terms vanish because of equation (20), and the four term
equals xnyn because we normalized v to ensure 〈v, v〉 = 1. Hence,

〈βx, βy〉V = 〈x′, y′〉 + xnyn = 〈x, y〉 ,

as desired. �

Proposition 4.3. For a square matrix M ∈ Rn×n the following properties are equivalent.

1. The bilinear function f (x, y) = 〈x,My〉 is a positive de�nite inner product.

2. M = BBT for some invertible square matrix B.

3. M = BBT for some (possibly rectangular) matrix B whose column space is Rn.

4. M =
∑m

i=1 aixixT
i for some coe�cients a1, . . . , am > 0 and some sequence of vectors x1, . . . , xm ∈

Rn that contains a basis for Rn.

5. M = QDQT for some orthogonal matrix Q and diagonal matrix D with positive diagonal
entries.

6. M is a symmetric matrix whose eigenvalues are all strictly positive.
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