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These notes introduce some important and commonly used probability distributions, especially
the Gaussian distribution which is ubiquitous in statistics, data science, and all of the natural and
social sciences. We begin by briefly reviewing some material from probability theory. In doing
so, we adopt an unorthodox approach that emphasizes random variables and the operations one
can perform on them, rather than the traditional approach of starting with sample spaces, events,
and probabilities.

1 Review of Random Variables

Our presentation of probability will focus on random variables. A random variable X taking values
in a set T can be thought of as a variable whose value definitely belongs to 7', but the value is
undetermined until X is randomly sampled. If ¢(x) is a Boolean predicate on 7 (i.e., a mapping
from T to {TRUE, FALSE}) then there is a number Pr(¢(X)) in [0, 1] called the probability of the
event ¢(X).

Technically, Pr(¢(X)) is only defined when ¢ is “measurable” We will not give the definition of
measurable here, but we will say that when T is a vector space and ¢ is any predicate that can
defined using continuous functions, equations, and inequalities, ¢ is measurable. For example, if
X is a real-valued random variable, the predicate ¢(x) = (x > 0) is measurable and its probability,
written as Pr(X > 0), is a well-defined number between 0 and 1. Any Boolean predicate that
could be defined in an ordinary programming language is measurable. Henceforth when we use
the word “predicate” we always mean “measurable predicate”

In addition to being well-defined and non-negative, probabilities must satisfy the following prop-
erties:

1. normalization: Pr(X € T) = 1.

2. finite additivity: If ¢ and ¢, are mutually exclusive, meaning no x € T satisfies ¢o(x) and
¢1(x), then
Pr(¢o(X) V ¢1(X)) = Pr(¢o(X)) + Pr(¢1(X)).

3. monotone convergence: If ¢, ¢, ... is a countable sequence of predicates,

Pr(dn € N ¢,(X)) = Al/im Pr(dn < N ¢,(X)).

Two random variables X and Y, taking values in 7, are said to have the same distribution, or to
be identically distributed, if the equation Pr(¢(X)) = Pr(¢(Y)) holds for every predicate ¢. We will
denote the relation “X and Y are identically distributed” by the notation X ~ Y. This is an equiv-
alence relation on the set of T-valued random variables, and its equivalence classes are called
probability distributions on T. We will sometimes use calligraphic font to refer to probability dis-
tributions, and we will abuse notation and write X ~ X when X is a random variable and X is a



probability distribution, to denote that X is the distribution of X, i.e. that X belongs to the equiv-
alence class X. (The notation X € X already expresses this relationship, since an equivalence
class is by definition a set. However it’s not customary to think of probability distributions as
sets, and it’s more customary to write X ~ X when the distribution of X is X.)

If X is a random variable and G is a function, then one can construct another random variable
Y = G(X). The distribution of Y is defined by the property that for every predicate ¢, Pr(¢(Y)) =
Pr(¢(F(X))). (Once again, there is a technicality that F must be what is called a “measurable
function”. The set of measurable functions includes any function on a vector space that can
be defined using continuous functions and if-then statements whose conditional is a measurable
predicate is a measurable. Any function that can be written in an ordinary programming language
is measurable. Henceforth, when we use the word “function” we implicitly mean “measurable
function.”)

For a random variable X taking values in 7', we say that X is supported in a subset S C T if
Pr(XeS)=1.

1.1 Finitely supported random variables

Given a finite set S C T and a function p : § — [0, 1] satistying s p(s) = 1, we can construct
a T-valued random variable X such that Pr(X = s) = p(s) for all s € S. Such an X is called a
finitely-supported random variable, and its support set is the set {s € S | p(s) > 0}. The distribution
of a finitely-supported random variable is uniquely determined by its support set and by the
probabilities of each element of the support set.

1.2 Independence

Two random variables X, Y are independent if they satisfy the equation

Pr(¢(X) A y(Y)) = Pr(¢(X)) - Pr(y(Y))

for every two predicates ¢, . More generally, a (possibly infinite) set of random variables {X; |
i € I}is mutually independent if the following equation holds whenever ¢,,...,¢, is a finite
sequence of predicates and i(1), ..., i(n) is a finite sequence of distinct indices in 7

Pr(¢1 (X)) A 92(Xi) A -+ A ¢, (Xiny)) = 1—[ Pr(¢i(Xi)))-
k=1

If X and Y are two random variables, then one can always construct a pair of independent random
variables (X', Y’) having the same distributions as X and Y, respectively. More generally, for any
(possibly infinite) index set 7, if we are given a probability distribution X; for each i € 7, then
one can construct an 7 -indexed family {X; | i € 7} of mutually independent random variables,
such that X; ~ X foralli € 7.



1.3 Real-valued random variables

If X is a random variable taking values in the real numbers, its cumulative distribution function
Fy (known as the CDF, for short) is the function

Fx(0) = Pr(X < 6).

It is a theorem that if two R-valued random variables have the same CDF then they are identically
distributed.

Lemma 1.1. If X is a real-valued random variable then its CDF, Fy, is a non-decreasing function
that satisfies
glirn Fx() =1, glim Fx(0) = 0.
Proof. It 6y < 6, then
Fx(6)) = Pr(X < 6y) + Pr(6) < X < 6)) > Pr(X < 6y) = Fx(6y),

so Fy is non-increasing. Since Fx(6) is bounded below by 0 and above by 1 for all 6, and Fy is
non-increasing, it follows that limy_,., Fx(0) and limy_,_., Fx(6#) exist. By monotone convergence,

;Lrg Fx(6) = }1_{2 Fx(n)=Pr(Ane N X <n) =1,
since for every real number is less than some natural number. Similarly,
QE@MFX(G) =1 —91_i}r_nool - Fx(0) =1 —111_&10 1 -Fx(-n)=Pr(An e N X > —n) =1,
since every real number is greater than —n for some n € N. ]

An important distribution on R is the uniform distribution on [0, 1]. This is the distribution whose
CDF is

0 ife<0
Funif(g): 6 if0<b<1
1 ifo>1.

Equivalently, a random variable X supported in [0, 1] is uniformly distributed if and only if the
binary digits of X (after the decimal point) are mutually independent and each of them is 0 or 1
with equal probability.

Lemma 1.2. If X is a real-valued random variable whose CDF, F, is continuous, then the random

variable Y = Fx(X) is uniformly distributed in [0, 1].

Proof. Consider any 6 € (0, 1). Since Fx(6) converges to 0 and 1 as 6 tends to —co and oo, respec-
tively, and Fy is continuous, the intermediate value theorem guarantees that the set F~'({4}) is
non-empty. Let ¢ denote the maximum element of F~'({#}). (It is a non-empty, closed, bounded
subset of R, so it has a maximum element.) Then, X < 7 if and only if Fx(X) < 6. Hence,

Pr(Y <0) =Pr(Fx(X) <0) =Pr(X <t) = Fx(t) = 6.

Since this equation holds for all 8 € (0, 1), Y is uniformly distributed. O
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Corollary 1.3. If X is a random variable whose CDF, F, is continuous and strictly increasing, and
Y is uniformly distributed in [0, 1], then X and F;'(Y) are identically distributed.

Corollary 1.3 gives a useful recipe for drawing random samples from a distribution with specified
CDF, F: one draws a uniformly random sample from [0, 1] and applies the function F~'.

Example 1.1. A random variable X is exponentially distributed with rate r if it satisfies
Pr(X>0)=¢".

Equivalently, X is exponentially distributed with rate r if its CDF is Fx(f) = 1 — ™. Using
Corollary 1.3 we can see that one way to sample an exponentially distributed random variable
with rate r is to sample a uniformly random number ¥ € [0, 1] and apply the transformation
X = 1In(%).

r M -y

1.4 Probability density

If V is a finite-dimensional vector space and f : V — [0, c0) is a function satisfying fv fX)dx =1

then one can construct a random variable X whose distribution satisfies Pr(X € §) = fs f(x)dx
for every (measurable) subset S C V. We say that f is the probability density function of X. In
the special case when V = R, if X has probability density function f then its CDF is Fx(0) =

f_ 900 f(x)dx. Conversely, if the CDF of a real-valued random variable is differentiable, then the
derivative of the CDF is a probability density function for that random variable.

If X and Y are independent random variables taking values in vector spaces V and W, respectively,
and X and Y have density functions f, g, respectively, then the random variable (X, Y), which takes
values in V X W, has density function % defined by

h(x,y) = f(x)g(y).

1.5 Expected value

If X is a random variable taking values in [0, o] its expected value (also known as its expectation)
is defined by the formula

E[X] = f ) Pr(X > 6)df = f m(l — Fx(6)) dé.
6=0 0=0

The standard definition of expected value represents it as the weighted average of the possible
values of X, weighted by their respective probabilities. That definition turns out to be equivalent
to the formula above; the following two lemmas state and prove the equivalence, first for the case
when X has finite support and then for the case when X has a probability density function.

Lemma 1.4. If X is a finitely-support random variable with support set S C [0, o] then E[X] =
Dses S Pr(X = ).



Proof. Enumerate the elements of S in increasing order as s; < s, < ... < s, and let p; = Pr(x =
s;). For notational convenience let 5o = 0. Then we have

Z Sipi = Z Z(Sj - Sji_1)pi = Z Z(Sj — Sji_1)pi = Z(Sj —sji) Pr(X > s5;_1) (1)
pa i1 j=1 =1 =) =y
In addition we have
f Pr(X > 6)df = Zf Pr(X > 6)df = > (s; = 5;-1)Pr(X > 5;.1). 2)
0 j:1 Sj-1 j=1

The right sides of Equations (1) and (2) are identical. The left sides are, respectively, equal to
Dses S+ Pr(X = s) and E[X], which completes the proof of the lemma. O

Lemma 1.5. If X is a [0, o0)-valued random variable that has a probability density function fx,
then

E[X] = f 0 fx(6) db.
0
Proof. The probability density satisfies fx(0) = %F x(0). Using integration by parts we find that

foo 0 fx(0) do == fw(l — Fx(6))do + (alim 6-(1- FX(G))) =E[X] + lim 0 (1 - Fx(6)). (3)
0 6=0 —ee -

The proof divides now into two cases. If the limit on the right side of Equations (3) is zero, then
we are done. Otherwise, there is some € > 0 such that the set

O.={0160-(1-Fx(0) > ¢}

is unbounded. In this case we claim that both the left and right sides of Equation (3) are infinite.
Define an infinite sequence of positive numbers 6y, 6, . .. recursively, by choosing 6, to be any
element of ®, and choosing 6,,; to be any element of ®, that exceeds 26,. Define 6, = 0 for
notational convenience. Then for any 6 € [6,_;,6,] we have 1 — Fx(8) > 1 — Fx(6,), so

00 © hn o O
fo<1—Fx<9))d9:;El(l—w))de)z;f (1 - Fx(6,))df

On—1

(o) (o8] On
= D (6= 6,)(1 = Fx(6,)) > ) 5(1 = Fu(6)).
n=1 n=1

The sum on the right side is infinite because each summand is greater than $. Hence, the right



side of Equation (3) is infinite, as claimed. As for the left side of (3),

0o 00 s o vn
[ en@as=Y, [ on@ao= [ o 100
0 n=1 01 n=1 01

n

= Z 9;1_1(FX(9n) - FX(Hn—l))
n=1

On-1 [(1 = Fx(6p-1)) = (1 = Fx(6,))]

M

1

n

(o)

2
(6~ 6,-)(1 = Fx(6,) > 3, =1 = Fx(6,)

n=1

Me

S
I
—_

Again, the sum on the last line is infinite because each summand is at least /2. O

For a random variable X that takes both positive and negative values in R, define X* = max{0, X}
and X~ = min{0, X}. Both X™ and —X~ are non-negative random variables. If at least one of them
has finite expectation, then E[X] is defined by the equation

E[X] =E[X"] - E[-X"].

If E[X*] = E[-X"] = oo then the expectation of X is undefined.

An important property of the expectation operator is linearity of expectation: for real-valued
random variables X, Y, we have

E[X + Y] = E[X] + E[Y]

whenever the terms on the left and right sides are well-defined. Linearity of expectation also holds
for countable sums: if X;, X, ... is an infinite sequence of random variables such that either

1. 27 [BIX:]| < oo, or

2. each variable X, is supported on [0, co],

then

For a random variable X taking values in R”, one can define the expectation E[X] coordinatewise.
In other words, the i coordinate of E[X] is the expectation of the i coordinate of X. Using
linearity of expectation for scalar-valued random variables, one can prove that the expectations
of vector-valued random variables satisfy the following version of linearity of expectation: for
any random variables X, Y taking values in R" and any n X n matrices A and B,

E[AX + BY] = AE[X] + BE[Y].



If X is a random variable taking values in a finite-dimensional vector space V, its expectation is
defined by choosing a based vector space structure 8 : R” — V, and defining E[X] = BE[B~1(X)]).
Using linearity of expectation, one can verify that the vector E[X] defined by this equation does
not depend on the choice of based vector space structure.

We present the following lemma about expectations of products of independent random variables
without proof.

Lemma 1.6. If X, Y are independent random variables and f, g are real-valued functions, then
E[f(X)g(M)] = E[f(X)] E[g(Y)].

Another useful fact about expected values is Markov’s Inequality, which bounds the probability
that a non-negative random variable exceeds its expected value by a specified factor.

Lemma 1.7 (Markov’s Inequality). IfX is a random variable taking values in [0, c0) and E[X] < oo,

then for all 6 > 0,

Pr(X > 60) < E[%

Proof. The function G(f) = Pr(X > ¢) is non-negative and non-increasing in ¢, so

0o 0 0
E[X] = f Pr(X > 1)dt > f Pr(X > t)dt > f Pr(X > 0)dt =6 - Pr(X > 0).
0 0 0

Dividing both sides by 6 we obtain Markov’s Inequality. ]

1.6 Variance and covariance

If X is a real-valued random variable whose expectation is well-defined and finite, the variance
of X is defined by

Var(X) = E [(X - ]E[X])2] .

An important property of the variance is that when one sums up a sequence of independent
random variables, the variance of their sum equals the sum of their variances.

Lemma 1.8. If X, X>, ..., X, are independent real-valued random variables, each with finite vari-
ance, then

Var(X, + -+ X)) = Z Var(X,).
i=1

Proof. We will prove the n = 2 case of the lemma, i.e. that the relation Var(X+Y) = Var(X)+Var(Y)
holds when X and Y are independent. The full lemma then follows easily by induction on 7, using
X:XnandY:X1+---+X,,_1.



Let X = E[X] and ¥ = E[Y]. Using the definition of variance, along with linearity of expectation,
we find that

Var(X +Y) =E[(X - %+ Y - 5)]
=EB|(X - 37| + 2B[(X - DY - 5)] + E[(¥ - 5’|
= Var(X) + Var(Y) + 2E [(X — D)(Y - y)].

Since X and Y are assumed to be independent we can apply Lemma 1.6 to conclude that
E[(X -0 -] =E[X-x]-E[Y-y]=0
which concludes the proof. m]

The covariance of two real-valued random variables X and Y is defined by
Cov(X,Y) = E[(X - E[XD(Y - E[Y])].

If X and Y are independent one can check, using linearity of expectation, that their covariance is
Zero.

For a vector-valued random variable X taking values in R", the covariance matrix Cov(X) is the
n X n matrix whose (i, j) entry is Cov(X;, X;). Equivalently, Cov(X) can be defined using the
formula

Cov(X) = E[(X - E[X]) (X — E[X])7].

2 Gaussian distributions

1,2
§X

The normal distribution on R is the probability distribution with density function f(x) = %e‘ ,
where the normalizing factor % is chosen to ensure that f_ 0:0 f(x)dx =1, as required for a prob-
ability density function. The normal distribution (and its multi-dimensional generalization, the
Gaussian distribution) is the most important distribution in continuous probability theory. One
reason for its importance is the Central Limit Theorem, which says that (under mild conditions)
the distribution of the average of n identically distributed random variables converges to a normal
distribution, when suitably shifted and rescaled.

Theorem 2.1 (Central Limit Theorem). Let Xi, X», ... be an infinite sequence of identically dis-
tributed real-valued random variables, each with finite expectation u and finite variance o>. Then
asn — oo,
n(Xi+---+X, d
i(l— - ,u) — N(0,1).
o n

The relation — in the theorem statement is called “convergence in distribution.” It means that if
F,, denotes the CDF of the random variable on the left side and F denotes the CDF of the random
variable on the right side, then F,(6) — F(6) as n — oo, uniformly in 6. In other words, for every
£ > 0 there is some ny < oo such that for all n > ny and all § € R, |F,(0) — F(0)| < &.



Unfortunately there is no closed-form expression for the CDF of the normal distribution. This
raises the question of how to sample normally-distributed random variables. Fortunately there
is a clever trick that allows drawing two independent normally-distributed random variables at
once. This is based on the observation that if X and Y are independent, normally-distributed
random variables, then the probability density function of the pair (X, Y) is

f(x’y) = (ze_éxz) (ze_%yz) = ?e_%(/\’z‘i'yz).

Now, represent the pair (X, Y) in polar coordinates as (R, ®) where R and ® are random variables
satistying X = Rcos(®), Y = Rsin(®). We have

1 00 00 1 27T 00
?f f e_%(x2+y2)dxdy = ?f f e—%rzrdrde (4)
—o0 J -0 0 0

The extra factor of r in the integrand is attributable to the change-of-variables formula for in-
. . ; 12,
tegrals in polar coordinates, dxdy = rdrd6. It makes a huge difference because re2” is the
o 1,2 _ : :
derivative of 1 — e72". Hence, we can perform the substitution u = 1,2 and rewrite the integral

2
as

1 00 00 1 27T 00
?f f e_%(xzﬂ'z)dx dy = ? f f e "dudo. (5)
—00 J—00 0 0

This integral formula has a few consequences.

1. It’s easy to evaluate the right side and find that it equals % Since the left side must be equal
to 1 (integrating a random variable’s probability density over its support set always yields
1) we may conclude that Z = V27. Therefore,

2

The normal disibutrion N'(0, 1) has density f(x) = v%?e_%x .

2. From the right side of Equation (5) we can deduce that R and ® are independent random
variables, © is uniformly distributed in [0, 27), and U = %Rz is exponentially distributed
with rate 1. Therefore, one can use the following procedure to draw samples from N (0, 1).

(a) Sample ® uniformly at random from [0, 27).
(b) Sample Z uniformly at random from [0, 1].
(c) Let U = In(:%).
(d) LetR = V2U.
(e) Let X = Rcos(0).
3. An exponentially distributed random variable with rate 1 has expected value 1, so %]E[Rz]

1. Since R? = X + Y? and X, Y are identically distributed random variables with E[X] =
E[Y] = 0, we have Var(X) = E[X*] = 1E[X* + Y?] = 1E[R?] = 1. Therefore,

A random variable with distribution N (0, 1) has variance 1.



If X is a random sample from N(0, 1), then the random variable Y = X + u has expectation u
and variance 0%, because

E[Y] = cE[X] +u=p
Var[Y] = E[(Y — p)*] = E[(cX)*] = o?E[X?] = o~

The distribution of Y = o X +u is denoted by N (u, 0%) and is called the Gaussian distribution with

mean u and variance 0.

2.1 Multivariate Gaussian distributions

For vector-valued random variables taking values in R", the counterpart of the normal distribu-
tion is the multivariate normal distribution N (0, 1), which is the distribution of a random vector
whose coordinates are independent random samples from N (0, 1). In other words, the density of
N (0, 1) is the function

daj2
e

£ = ()" ebinei) 2 (L)% oo, ©)

If X ~ N(0,1), then its expectation and covariance matrix are E[X] = 0 and Cov(X) = 1,
respectively.

If X ~ N(0, 1) then the distribution of X has two key properties that are evident from Equation (6).

1. The n coordinates of X are independent random variables.

2. The distribution of X is rotation-invariant. In other words, for any orthogonal matrix Q,
the random variable QX has the same distribution as X.

A surprising number of identities regarding normally distributed random variables can be derived
from these observations.

Lemma 2.2. IfX,,..., X, are independent random variables, each distributed according to N (0, 1),
then \/Lﬁ(Xl +- - -+X,,) also has the distribution N (0, 1). More generally, for any coefficientsay, ..., a, €

R, not all equal to zero, the random variable Y = a1 X, + a,X, + - -+ + a,X,, has the distribution
N(@©,at +--- +ay).

Proof. Let o = /a? + -+ + a2, and observe that the vector a = é(al,az, ..., a,) satisfies ||al|, =

1. Hence, there exists an orthogonal matrix Q whose first row is a. The random vector X =
(Xi,...,X,) has the distribution N (0, 1), so QX ~ N(0, 1) as well. The first coordinate of the
vector OX is Y/o, hence Y/o ~ N(0,1) and Y ~ N (0, o7?). O

If X is a R"-valued random variable with distribution N (0, 1), B is an invertible n X n matrix,
and u is any vector in R”, then the distribution of ¥ = BX + u is called a multivariate Gaussian
distribution. The expectation of Y is u and its covariance is

Cov(Y) = E[(Y - )Y - )"] = E[(BX)(BX)"] = BEIXX"1B" = BB,
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since E[XXT] = Cov(X) = 1. The distribution of Y is denoted by N (u, BB"). The density of Y
can be calculated as follows. Let 7' denote the function 7'(x) = Bx + u. Its inverse is the function
T7'(y) = B™'(y — p). A small ball B of volume & > 0 centered at y is mapped by 7! to a small
ellipsoid & of volume | det(B™!)| - & centered at x = T~!(y). We have

Pr(Y e B) =Pr(X € &) = [| det(B™")| (ﬁ)/ 2 ok 0(1)] &,

where o(1) denotes an error term that converges to zero as € — 0. Thus, the density of Y aty is
n/2
|det(B™1)] (%r) ! e~ 25X Now, recalling that x = T~!(y) = B~!(y — u), we have

xx)= (B (y-p), B (y-p) = (y -, BB (y— ) = (y - . (BBT)'(y - )} .

The right side depends only on BB", not on B. Thus, if two multivariate Gaussian random vari-
ables have the same mean u and the same covariance matrix ¥ = BB, then they are identically
distributed and their density is

n/2
f(y) = det(x)™'? (%) o Sy -

Lemma 2.3. IfA is ad X n matrix of rank d and X ~ N(0, 1) is a R"-valued multivariate nor-
mal random variable, then Y = AX is a R?-valued Gaussian random variable with distribution

N(,AAT).

Proof. Using the singular value decomposition, write A as A = US VT where S is a d X n matrix
whose diagonal entries, S ;, are equal to the singular values of A and whose off-diagonal entries,
Sij (i # j), are all equal to zero. We can factor § asS = D[1 0], where D is a d Xd diagonal matrix
with the singular values of A on the diagonal, and [1 0] is a d X n matrix formed by juxtaposing
the d X d identity matrix with a d X (n — d) block of zeros. Then

Y=UD[10]V'X.

Let W = [1 0] V" X. Since the distribution of X is rotation-invariant and V' is a rotation matrix,
the distribution of W is the same as the distribution of [1 0] X, i.e. the first d coordinates of X.
In other words, W ~ N(0, 1), where 1 now refers to the d X d identity matrix rather than n X n
identity. The matrix B = UD is invertible, and we have derived above that when W ~ N(0, 1)
and Y = BW for an invertible matrix B, then Y ~ N'(0, BB"). To finish up, note that

BBT = UD*UT =USSTUT = AA™,
soY ~ N(0,AAT) as claimed. O

We remark that Lemma 2.2 corresponds to the special case of Lemma 2.3 where A has only one
row.
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3 The Chernoff and Hoeffding Bounds

When one averages n independent random variables, each with bounded mean and variance,
the average is unlikely to differ from its expected value by much more than % In Section 2
we encountered one important theorem that gives a precise and quantitative interpretation to
this intuition, namely the Central Limit Theorem. However, the Central Limit Theorem is an
asymptotic statement that holds as n — oco. In the analysis of randomized algorithms, and in the
average-case analysis of algorithms applied to random datasets, it is often important to make use
of non-asymptotic theorems that bound the probability that an average of n independent random
variables will be far from its expected value, for fixed n rather than n — oo. This section presents
two such theorems, the Chernoff and Hoeffding Bounds, along with a few applications.

3.1 The cumulant generating function of a random variable

For a real-valued random variable X, the cumulant generating function Kx(t) is defined by the
formula

Kx(t) = In(E [¢™]).
The importance of this function lies in the fact that it behaves additively with respect to summa-
tion of independent random variables.

Lemma 3.1. If X, Y are independent real-valued random variables then
Ky.y(t) = Kx(1) + Ky (1)
forallt.
Proof. We have
Kxsy(t) = In(E[¢™]) = In (E[e*e”]) = In (E[e*|E[e”]) = In (E[e™]) + In(E [e"]).
where the equation E [¢¢” | = B|¢X | E [¢” | follows from the independence of Xand Y. O

Another useful property of the cumulant generating function is its behavior under scaling.

Lemma 3.2. For any real-valued random variable X and any A,t € R,

Kax(t) = Kx(A1).

Proof.
Kyx(f) = In (E [e’”‘]) = Kyx(0).
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When one expands the cumulant generating function Kx as a power series in ¢ near ¢t = 0, the
coefficients of the power series recover many useful parameters of the distribution of X.

e )
|

1) 1 s )
1+ E[X]t + SE[X 17+ cEIX 12 +-
X 1)kt k
:;( 1k) (E[X]t+%E[Xz]t2+éE[X3]t3+-~)

1 1
Kx(t) =In|E|1 + X + Ethz + 8t3X3 +

=In

(E[X]t + %E[Xz]t2 + éE[X3]t3 - ) = (%E[XW + %E[X]E[Xz]ﬁ 4. )
+ (%E[XP? + ) + O(th
= E[X]r + % (E[Xz] - E[X]Z) £+ é (E[X3] - 3E[X]E[X?] + 2E[X]3) + 0.

The expectation and variance of X occur as the coefficients of 7 and t2 respectively. The coeffi-
cient of —t" is called the n'" cumulant of X and is denoted by Kn(X) The identity x,(X + Y) =
K.(X) + K,,(Y) valid for all n € N and all independent random variables X, Y, follows from
Lemma 3.1. This generalizes the familiar facts that expectation and variance behave additively
when applied to sums of independent random variables.

The cumulant generating function forms the centerpiece of one proof of the Central Limit The-
orem. To begin with, let us calculate the cumulant generating function of X when X ~ N (0, 1).

E[etx] — v%_ﬂ Iw tx —fx dx = \/ﬂf (x2_21x) dx = \/Lz_ﬂ.eéﬂ I: e—%(x—[)2 dx = 6%12
Kx(t) = In (E [¢™]) = %ﬂ

Now consider an infinite sequence of independent, identically distributed random variables Y1, Y5, . ..

with E[Y;] = 0 and Var(Y;) = 1 for all i. Denote the cumulant generating function of each Y; by
Ky(t). Since E[Y;] = 0 and Var(Y;) = 1, we have Ky(¢) = t2 + O(}). The Central Limit Theorem

i
is equivalent to the assertion that Z, = TE(Yl +---Y,) — N(0,1) as n — oco. Using Lemmas 3.1
and 3.2, we have

t t (Y t V)1 &
K7 (t) = Ky, 4. —|=nKy|—=|=n|z|—=] +O0|— =-+0 ,
0= K[ =i 2) =al3(5) +ol )} =57 o)
so Kz, (1) —> 1> asn — co. Recall that 1/ is the cumulant generating function of the distribu-
tion NV (0, 1). The remainder of the proof needs to show that the convergence of the cumulant

generating function of Z, to that of (0, 1) implies the convergence of the distribution of Z, to
N (0, 1). This is the more difficult part of the proof, and we will omit discussion of it here.

The cumulant generating function furnishes a useful way to bound the probability of a random
variable deviating significantly from its expected value.
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Lemma 3.3. Let X be a random variable with cumulant generating function Kx(t), and suppose
A > 0. Foranyt > 0,

Pr(X > E[X] + A) < fxO—1EXIHD
Pr(X < E[X] — 1) < MxCOHEXI=D,
Proof. To derive the bound on Pr(X > E[X] + 1), observe that the inequality X > E[X]+ A holds if
and only if e’ > ¢'®IX1*V and apply Markov’s inequality. To derive the bound on Pr(X < E[X]-2),

observe that the inequality X < E[X] — A holds if and only if e™* > ¢7®XI=V and again apply
Markov’s inequality. ]

3.2 The Chernoff Bound

Let Xi, X5, ..., X, be independent (not necessarily identically distributed) random variables taking
values in [0, 1]. In this section we derive the Chernoff bound, which bounds the probability that
X; + -+ + X, differs from its expectation by a factor lying outside the interval [1 — &, 1 + £]. We
will assume throughout this section that 0 < & < 1.

Lemma 3.4. For any random variable X taking values in [0, 1], the cumulant generating function
Kx satisfies
Kx(t) < (¢ = DE[X]

forallt e R.
Proof. For all x € [0, 1] and all # € R the inequality
e <1+ -1)x

holds because the left side is a convex function of x, the right side is a linear function of x, and
the left and right sides are equal at the endpoints x = 0 and x = 1. Applying this inequality along
with linearity of expectation, we find that

E[e’X] <1+ (e - DE[X].

The lemma follows upon taking the natural logarithm of both sides and using the inequality
In(1 + z) < z, which is valid for all z > 0. |

Theorem 3.5 (Chernoff bound). If X;, X», ..., X, are independent random variables taking values
in[0,1]and X =X, +---+ X, then

Pr(X > (1 + &)B[X]) < e 3°EX
Pr(X < (1 — &)B[X]) < e 2 EX

Proof. Using Lemmas 3.1 and 3.4, together with E[X] = >, E[X;], we find that Kx(¢) < (¢’ -
1)E[X] for all # € R. Now, from Lemma 3.3 we have

Pr(X > (1 + &E[X]) < (@~ 1-(+enE(X]

14



for all 7 > 0. To minimize the right side, set# = In(1 +&). Thene'—1—-(1+¢&)t = e—(1+¢&)In(1 +¢).
Using the Taylor series

1.2 1.3

(1+8)ln(1+8):(1+8)(8—%82+%83—"'):8+28 33 +"'>8+%82

we find that e — (1 + &) In(1 + ¢) < —%82 and the upper bound on Pr(X > (1 + £)E[X]) follows.

For ¢ > 0 another application of Lemma 3.3 yields
Pr(X < (1 — &)E[X]) < el ~I+1-omELX],

To minimize the right side we setf = —In(1 —g) and thene™ -1+ (1 —&)t = —e— (1 — &) In(1 —¢).
Using the Taylor series

g—.<e-1g

—(1—6)111(1—8):(l—8)(8+%82+%eps3+"'):8——8 - 5

1
2 6

we find that —e—(1-g)In(1 —¢) < —%82 and the upper bound on Pr(X < (1+¢&)E[X]) follows. O
A few features of the Chernoff bound are worth noting.

1. Theorem 3.5 bounds the probability of X deviating from E[X] by a large amount. Inequali-
ties of this type are called large deviation inequalities or tail bounds, since they quantify the
amount of probability in the “tail” of the distribution of X.

2. The probability of a large deviation tends to zero exponentially fast as E[X] grows large.
Inequalities of this type are called exponential tail bounds.

3. The Chernoff bound concerns that probability that the ratio X/E[X] is far from 1, i.e. it
pertains to multiplicative deviations of X from its expected value. In Section 3.3 we present
an exponential tail bound for additive deviations, i.e. a bound on the probability that |[X —
E[X]| is far from zero.

4. The probability of large deviation is exponentially small as a function of E[X], not as a
function of n. Even if n is very large, it’s possible that the distribution of X is not very
concentrated around its expected value. For example, if X|, ..., X, are deterministically
equal to 0, and X, is equal to 0 or 1, each with probability %, then X is equal to 0 or 1, each
with probability %, so the event that X is between (1 —&)E[X] and (1+&)E[X] has probability
zero! This is consistent with the Chernoff bound, which only says that Pr(X > (1 + &)E[X])
is small when E[X] is large.

5. In the exponential function on the right side of the Chernoff bound, the dependence on
€ is quadratic. This is typical of exponential tail bounds. In order for a deviation such as
X > (1 + &)E[X] to be unlikely, the expected value of X must be greater than 1/&* times
the maximum value of any individual X;. A useful way of summarizing this observation is,
“To estimate the frequency of an event within a factor of 1 + &, you must wait until you have
observed the event at least 1/&” times.”

15



3.3 The Hoeffding Bound

In this section we derive a different exponential tail bound in which we once again have inde-
pendent random variables Xi, ..., X,, each taking values in a bounded interval, and their sum is
denoted by X. This time, rather than proving that the ratio X/E[X] is unlikely to be far from 1,
we wish to prove that the absolute difference |X — E[X]| is unlikely to be far from 0. In other
words, whereas the Chernoft bound provides conditions under which E[X] is likely to be a good
multiplicative approximation to X, we wish to understand conditions under which E[X] is likely
to be a good additive approximation to X. The Hoeffding bound answers this question.

As before, the exponential tail bound will be proven using an application of Lemma 3.3, and
the key ingredient will be a lemma that furnishes an upper bound on the cumulant generating
function of a random variable.

Lemma 3.6 (Hoeffding’s Lemma). If X is a random variable supported on an interval [a, b], with
expected value y1, then the cumulant generating function Kx(t) satisfies

(b —a)’t?

Kx(t) —ut < 3

Proof. The left side is the cumulant generating function of the random variable X — y, which has
expected value zero, so we may replace X with X —u if necessary and assume henceforth, without
loss of generality, that E[X] = 0. The lemma then asserts the inequality Kx(¢) < %(b — a)’*t*. To
prove this inequality, we will use Taylor’s Theorem. We know Kx(0) = O from the definition of
the cumulant generating function, and we know K3(0) = 0 since the derivative of Ky at 0 is the
expectation of X. Hence, Kx(t) = %K;’ (u)t* for some u.

To conclude the proof, we need to prove that Ki/(u) < i(b — a)? for all u, when X is a random
variable supported on [a, b]. We will prove this bound by constructing a new random variable Y
supported on [a, b] whose cumulant generating function Ky() satisfies

Ky(t) = Kx(u +1) — Kx(u)

for all 7. Then, taking the second derivative of both sides with respect to ¢, we will obtain K}/(0) =
K (u). Recalling that K7/ (0) is equal to the variance of ¥, we will be left with showing that the
variance of any random variable supported on [a, b] is less than or equal to }L(b —a)?. Tt will turn
out that this inequality is quite easy to prove.

Let Y be a random variable obtained from X by “reweighting the probability of each support point
z by the factor ¢**” If X has probability density function fx(z) this means that Y has probability
density function fy(z) = %e“z fx(2), where the normalization factor Z = f_ o:o e fx(z) is chosen so
that the equation f_ O:O fr(z)dz = 1 holds, as required for a probability density function. More gen-
erally, i.e. whether or not X has a probability density function, the distribution of Y is the unique
distribution satisfying the property that for every function g, E[g(Y)] = E[e"*g(X)]/E[¢"*]. Using
the function g(z) = €%, we find that E[e'] = E[e“""X]/E[¢"¥]. Taking the logarithm of both sides,
we obtain Ky(t) = Kx(u + t) — Kx(u), as desired.

As observed earlier, to conclude the proof of the lemma we need only show that a random variable
Y supported on the interval [a, b] has variance at most %(b — a)?. The validity of the inequality

16



Var(Y) < }t(b — a)? is unaffected if we apply an affine transformation to ¥ and we apply the same
affine transformation to the interval [a, b]. In other words, if we replace Y with cY + d and we
replace [a, b] with [ca +d, cb + d], the validity of the inequality is unaffected because the variance
of Y is scaled by ¢?, and the squared-length of the interval is also scaled by ¢?. Hence, without loss
of generality (applying an affine transformation to Y and to [a, b] if necessary) we can assume
[a,b] = [-1,1] and }‘(b —a)?* = 1. The variance of Y is E[Y?] — E[Y]*. The first term on the right
side is clearly no greater than 1 because Y is supported on [~1, 1]. Since E[Y]* > 0, it follows
that E[Y?] — E[Y]? < 1, as desired. ]

Theorem 3.7. (Hoeffding’s Inequality) Suppose X, X>, ..., X, are independent random variables
and that for each i, the support of X; is contained in a bounded interval [a;, b;]. Let X = X; +- -+ X,,.
For any A > 0,

Pr(X > E[X] + 1) <ex (—2—/12)
B =P Z?:l(bi - ai)2
Pr(X < E[X] - A1) < exp (—2—/12)
Z?:l(bi - ai)2

Proof. Let u; = B[X;] for each i, and let u = 3., 1t; = E[X]. By Hoeffding’s Lemma, Ky, (f) — p;t <
+(b; — ap)*t* for all 7 and all i. Summing over i,

1 C 2.2
KX(t)—,utsgg(bi—ai)t.

Let ¢ = % >, (b; — a;)*. By Lemma 3.3,

Pr(X > E[X] + A) < efxO-u=At < s

S G
4c i (bi—ai)*”

The proof concludes by setting ¢ = 1/(2¢), so that ct*> — At =

3.4 Applications of the Chernoff and Hoeffding bounds

The Chernoff and Hoeffding bounds are some of the most versatile tools in the analysis of ran-
domized algorithms and the average-case analysis of algorithms. In this section we will present
a number of applications of both.

3.4.1 Estimating the expected value of a distribution

Suppose Y is a random variable taking values in an interval [0, M] whose expected value we wish
to estimate. Let Y1, Y>, ... be a sequence of independent random variables, each having the same
distribution as Y. One way to estimate E[Y] is to simply take the unweighted average of the first
N samples,

~ 1
Y=—F +---+Yy)
N(l N)

17



We wish to determine a value of N such that the error of the estimate is very unlikely to exceed
&
Pr(|Y — E[Y]| > &) < 6.

This type of guarantee is summarized by saying that the estimator ¥ is “probability approximately
correct,” often abbreviated as PAC.

By Hoeftding’s Inequality,

N 2N2g? 2N&?
Pr(|Y — E[Y]| > &) = Pr(|]Y; +...+ Yy — NE[Y]| > Ne) < 2exp (_W) = 2exp (— YE )

To make this less than d, we require

N>M21n 2
262 \§)°

This sample complexity bound has several features that are typical for estimation procedures
that use independent, identically distributed samples to estimate a scalar quantity. The number
of samples required depends inverse-quadratically on the tolerable level of “relative error;” in this
example the tolerable relative error is £/M because we are trying to estimate a quantity belonging
to an interval of length M, and we tolerate additive error up to €. On the other hand, the number
of samples depends on logarithmically on the inverse of the “confidence parameter,” §, which
governs the maximum failure probability that is deemed tolerable.

3.4.2 Generalization error of empirical risk minimization

We now show how the Hoeftding bound can be applied to the important problem of generalization
error in machine learning. To keep the analysis as simple as possible, we will focus on the task of
hypothesis selection, where there is a finite set of hypotheses and the learner aims to use a set of
training data to choose a hypothesis that generalizes to unseen data.

We can model the hypothesis selection problem as follows. We have:
« arandom variable Z taking values in a set Z;
« a finite set of hypotheses, H = {hy,..., h,};

« independent random variables Z, Z,, ..., Zy, each identically distributed to Z, collectively
called the training set.

18



« aloss function L : H X T — [0, 1]. The value L(h, z) indicates how poorly hypothesis 4 fits
data point z.

We assume that the learner is given the training set {Z,, ..., Zy} but does not know the distribu-
tion from which the Z;’s were sampled. There are two important ways of evaluating a hypothesis
h.

1. The population loss is L(h) = E[L(h, Z)]. This measures how well hypothesis 4 performs on
the actual distribution from which the data is sampled, including data points that were not
present in the training data.

2. The empirical loss is # >, L(h,Z). This has the advantage that it can be computed from
the training data, unlike the population loss which can only be computed if one knows the
data distribution.

Empirical risk minimization is the algorithm that selects the hypothesis /iggy, that minimizes em-
pirical loss on the training set. The hope is that if the training set is a representative sample of
the data distribution, then /gy will also perform near-optimally when evaluated according to
population loss, even though it was selected to minimize empirical loss rather than population
loss.

Theorem 3.8. Let h, denote the element of H that minimizes population loss. For any0 < g,6 < 1,
if the number of data samples, N, satisfies N > 8% In(2m/5) then with probability at least 1 — 6,

L(hgry) < € + L(h,).

Proof. Let ¢(Z, ..., Zy) denote the Boolean predicate:

e
Yh —.
eH <2

- 1
Lh) = ) Lh.Z)
i=1

When Z,, ..., Z, satisfy property ¢, it implies that T,(hERM) < & + L(h.) because
L(hgru) < 3 + —ZL(hERM,Z) <z-+ = ZL(h*,Z) <&+ L(h,).

The first and third inequalities are applications of property ¢, the second inequality follows from
the definition of hggy,.

To complete the proof we just need to show that Pr(¢(Zy, ..., Z, )) >1-6.Forj=12,...,m
let (2, ...,Z,) denote the predicate |L(h) — % Zf\il L(h j,Zi)| . The random variables X =

%L(h i»Z:) take values in [0, +] and the expectation of their sum is L(h), so applying Hoeffding’s
inequality with 4 = &/2 yields

’N )

P (Z1,.... Zy)) < 2exp (—8—) <2,

2 m

by our assumption that N > g% In(2m/6). The Union Bound (Lemma 3.9 below) implies that

Pr(V’" Wiy, ..., Z,)) < Z;”:l Pr(yi(Zi,...,Z,)) < 6. Since V”’ " Wi, ...,Z,) is the negation of

¢(Zl, ..., 2Z,), it follows that Pr(¢(Z,, . .. Z ) > 1—0 as clalmed O
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In the proof we used the following simple fact about the probability of a disjunction of finitely
many predicates, called the Union Bound.

Lemma 3.9 (Union Bound). IfX is a random variable and y,(X), . . ., ¥,,(X) are Boolean predicates,
then

Pr (VL (X)) < ) Prg;(X)).

=1

Proof. Our plan is to use the property that probabilities are finitely additive. However, we can’t

use finite additivity directly because the predicates ¥, ..., ¥, are not (necessarily) mutually ex-
clusive. To work this obstacle, we construct mutually exclusive predicates ¢y, ¢, ..., ¢, as fol-
lows:

$,(X) = v;(X) A = (Vi ga(X).
By induction on j, the relation _ _
Vi_, $(X) = V,_ (X) (7)
holds. Consequently, for all j > i we have

$,(X) = =~ (VLX) = = (VX)) = ~¢i(X)

which shows that ¢;(X), ..., ¢,,(X) are mutually exclusive and justifies
Pr(AL,0,(X)) = > Pr(g(X). (8)
=1

Ifvi(X) =y (X) A ¢_j(X) then ¢;(X) and v;(X) are mutually exclusive and ¢ ;(X) = ¢;(X) V v;(X)
SO

Pr(y (X)) = Pr(¢;(X)) + Pr(v (X)) = Pr(¢;(X)). 9)
Applying Equation (7) with j = m, and using Equations (??), we obtain

Pr (VILw5(0) = Pr(VIL,4,00) = Z 0,X) < Z (X,

which completes the proof of the Union Bound. O

3.5 Reducing error rate of randomized algorithms

Our last application of the Chernoff bound comes from the theory of randomized algorithms
for decision problems. A decision problem is a problem whose output is an element of {0, 1},
with 0 representing “no” and 1 representing “yes.” A decision problem belongs to the complexity
class P if there is a deterministic polynomial-time algorithm — i.e., an algorithm running in time
O(n°) where n is the input size (in bits) and c is a constant — that answers the decision problem
correctly on every possible input. The complexity class BPP consists of decision problems II
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having a randomized polynomial-time algorithm A that satisfies the following guarantee, where
x denotes the problem input and r denotes the random string used by A.

Vx Pr(A(x,r) # II(x)) < % (10)

The random string r is assumed to be a uniformly random binary string whose length, L(n), is
bounded by a polnomial function of the input size, n. Property (10) is often stated equivalently

as follows: if TI(x) = 1 then Pr(A(x, r) = 1) > %, while if II(x) = 0 then Pr(A(x,r) = 1) < 1.

The error rate of a BPP algorithm can be reduced by running it repeatedly using independent
random strings, and taking a majority vote of the outcomes. The following algorithm uses a
random string R =r; : rp : 13 : -+ : r,, of length m - L(n), for some specified m € N.

Algorithm 1 Algorithm B,,(x, R)

1: Let n denote the number of bits in x.
: Break R into strings ry, 7, ..., 1, each of length L(n).
: Leta = % 2 Alx, ).

: Ifa> %, output 1. Else, output 0.

= W N

Lemma 3.10. If randomized algorithm A(x, r) satisfies Pr(A(x,r) # Il(x)) < % for all x, then for
any 6 > 0, randomized algorithm B,,(x,R) with m > 181In(1/6) satisfies Pr(B,,(x,R) # Il(x)) < ¢
for all x.

Proof. Since algorithm A satisfies the BPP property (10), when I1(x) = 1 we have E[A(x, r;)] > %
and when II(x) = 0 we have E[A(x, ;)] < % If B,,(x,R) # Il(x) then either II(x) = 0 and
Yim Alx,r) 2 %, or (x) = 1 and 32 A(x,7;) < . In the former case, }};’; A(x, r;) exceeds
its expected value by at least 2, while in the latter case it falls short of its expected value by at
least the same amount. In both cases, Hoeffding’s Inequality ensures that the probability of this

occurring is no greater than
_ 2 _
e 2(m/6)*/m e m/18 In(6) 5.

O

Lemma 3.10 has the following consequence for complexity theory. A decision problem ITis said to
belong to the complexity class P/poly if there is a family of deterministic algorithms {B,, | n € N}
such that:

1. for every input x of size n, B,(x) = I1(x);

2. for some constant ¢ < co and every n € N, the worst-case running time of B, on inputs of
size n is bounded by O(n°).

This is summarized by saying that the decision problem IT has a non-uniform family of polynomial-
time algorithms: it can be solved deterministically in polynomial time for all input sizes, but the
choice of algorithm depends on the input size.
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Theorem 3.11. If1l is a decision problem in BPP then I1 belongs to P/poly.

Proof. Let A be a randomized polynomial-time algorithm for IT that satisfies property (10). For
anyn € Nlet m = [18In(2) - n] = [181In(27")] and consider the randomized algorithm B,,.
According to Lemma 3.10, for all x € {0, 1}", Pr(B,(x,R) # II(x)) < 27". By the union bound,
Pr(3x € {0,1}" B,,(x,R) # II(x)) < 1. Hence, it is not the case that for all R € {0, 1}/, there
exists an x € {0, 1}* such that B,,(x, R) # I1(x). In other words, there exists some R, € {0, 1}
such that for all x € {0, 1}", B, (x, R,) = I1(x). Let B, be the algorithm that on input x, computes
B, (x,R,). Then the family {B, | n € N} constitutes a non-uniform family of polynomial-time
algorithms for I1. m]

A very natural and worthy goal is to eliminate the non-uniformity in Theorem 3.11 and prove that
BPP = P. This would show that giving algorithms access to random bits does not affect the set of
decision problems that can be solved in polynomial time, or equivalently, that every polynomial-
time randomized algorithm for a decision problem can be efficiently “derandomized” to yield a
deterministic polynomial-time algorithm for the same problem. Most complexity theorists believe
such a derandomization of BPP is possible. The effort to derandomize BPP and other complexity
classes is currently one of the most active research areas in complexity theory.

4 Tail bounds for matrices

A recurring theme in the analysis of algorithms is that one is applying an algorithm to n random
samples from a data distribution, and one wants to ensure that, with high probability, the output
is the same (or similar) to what we would obtain if we could run the algorithm on the entire
distribution. We already saw one example of this theme in Section 3.4.2, where the algorithm in
question was simply picking out the hypothesis with the least average loss on a data set, from
among a finite set of hypotheses. In this section we will analyze a more complicated example
— using the top singular vector of a set of data samples to estimate the top singular vector of
a covariance matrix — that requires using the exponential tail bounds for random scalars from
Section 3 to derive an exponential tail bound for random matrices.

It takes quite a few steps to reach the main result in this section, so we begin by presenting a road
map.

1. In Lemma 4.1 we construct a finite set of vectors on the (Euclidean) unit sphere in R¢, such
that every other vector on the sphere is close to at least one element of the set.

2. We use this finite set of vectors in Lemma 4.2 to prove an “enhanced union bound” that
non-trivially bounds the probability of the union of infinitely many events, when each
event refers to a particular inner product deviating significantly from its expected value.

3. In ?? we apply the enhanced union bound to derive an exponential tail bound for sums of
random matrices, asserting that with high probability, when the random sum is multiplied
by any unit vector, the product is close to its expected value.
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4. If Section 4.1 we apply the matrix tail bound to analyze the distribution of the top singular
vector of a set of random samples from a distribution.

Lemma 4.1. Let %! denote the unit sphere in R, i.e. the set of all x such that ||x||, = 1. For every
positive integer d and every 0 <y < % there is a set C(d,y) € 8% with at most (2e/y)? elements,
such that for all x € 39! there exists w € C(d,y) with (w,X) > 1 —y. Also, for all x € $97!, the
vector (1 — y)X is a convex combination of elements of C(d, y).

Proof. Let k = [%'l. For every d-tuple of non-negative integers I = (i, i, ...,is) such that i; +
-« + iy = k, and every d-tuple of signs S = (s1,...,sq) € {£1}9, let

smfﬂ
s \Vix
Wis :k_l/z 2_ 2 .

Sd \@
LetC(d,y) denote the set of all such vectors w; 5. By construction, the squared 2-norm of any such
vector is k7! ZJ : jl] =k iy +---+i5) = 1,50 C(d,y) € 3. For any x = (x1,...,x5) € 3%,
define d-tuples I = (iy,...,ig) and § = (s1,..., s4) by letting s; be the sign of x;, letting i; = [kx J
for j < d, and letting iy = k — (i) + -+ + ld—l)- We aim to prove that (w;5,x) > 1 —7y. By
construction, for all j, i; > kx? — 1, hence

d d . d 1/2
_ i ij 1
(Wrs,x)y=k'? E si\ix; = g \/%Ile > E (max{xﬁ— o 0}) |x;1.
= =

J=1

1Y (, 1 1
= ——) =[2=2]11 - —
(lle llek) (x] k)( xﬁk]’

we see that the right side is less than or equal to x - When x — 7 20, hence

Using the identity

L\ 1
(max{xi — O) > max{|x;| — m, 0}.

Let J denote the set of indices j € {1,2,...,d} such that x % We find that
d 1\ 1 d d 2d
(Wis,X) > Z (max{x? - 0}) |x;| > Z (Ix.,-l | Jlk) x| > Z x?—z = I—Z x?—% > 1—7,

j=1 jeJ jeJ JjeJ

because the inequality x? < % for all j ¢ J implies 3 4, x? <
(Wrs,X) > 1 —y as desired.

. By our choice of &, % < v, hence

I

Next we reason about the cardinality of C(d, y). The number of d-tuples of non-negative integers
that sum up to k is given by the binomial coefficient (d+k 1) which is less than (ZZ‘) since k > d by
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our assumption y < % Now using the identity’ ("g) < (%)g, we find that
a2k d d
ICd. NI < 2 | < (dek/d)" = (2e/y)".

Finally, we must prove that for every x € 84! (1 — y)x is a convex combination of elements of
C(d,y). Let K denote the set of all convex combinations of elements of C(d, y), and assume, by
way of contradiction, that (1 —y)x ¢ K. Since K is a closed, convex subset of R4, the intersection
of all halfspaces containing K is equal to K. Hence, for some non-zero a € R? and some scalar
b € R, the halfspace H = {z | (a,z) < b} contains every point of K but does not contain (1 — y)x.
Scaling a and b by the same positive scale factor, if necessary, we can assume ||a||, = 1. Then, we
know from earlier in the proof that there must exist some w € C(d, y) such that (a,w) > 1 — .
As w € K, this implies 1 —y < b. Now the Cauchy-Schwartz inequality implies

(a,(I-yx) <d=ylal:lxll. =1-y <b,

contradicting our assumption that (1 —y)x ¢ H. O

As explained earlier, Lemma 4.1 can be used to prove an “enhanced union bound” that allows
us to show that the probability of a union of infinitely many events (one for each vector in RY)
is small, if we can show that the probability of each individual one of the events is small. The
enhanced union bound will be stated in terms of a multiplicative notion of approximation, called
relative error, defined as follows.

Definition 4.1. If y,$ € R, and y # 0, the relative error of § approximating y is

A

. y
n@,y) = ——1'-
y

If y = 0, then n(y,y) = 0 if § = 0 and otherwise (9, y) is infinite.

In other words, n(9,y) < € when J is between (1 — &)y and (1 + €)y. As an example, the Chernoff
bound shows that when X, ..., X, are independent random variables taking values in [0, 1] and

X = X; + -+ + X, then for any € > 0 the relation n(X, x) < & holds with probability at least
-

Lemma 4.2 (Enhanced Union Bound). Suppose P is a random symmetric positive semidefinite
matrix inRY and Q = E[P). Then forany0 < < 1and0 <y <1,

) 2d
Pr(supn((X,Px), (x, 0x)) > ,3) < (76) sup Pr(n((x, Px), (x, 0x)) > (1 —=y8). (1)

xeRd xeRd

'The inequality ('Z,’) < (%)[ follows because flf In(x)dx < Z§=2 In(j) implies (£/e)’ < €!, which in turn implies

l
m Wl[ em
(7)< <(4)-
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Before proving the lemma, we pause to interpret Inequality (11). For any fixed x € R, the quantity
(x, Px) is a random scalar, and (x, Ox) is its expected value. The relation n({x, PXx), (X, Ox)) > f8
means that (x, Px) deviates from its expected value by a factor at least 1 + 3, or at most 1 — f3.
This is exactly the type of event that is shown to be unlikely by the Chernoftf Bound. In fact, in
the applications we will be looking at, P will be a sum of independent random matrices, so for
any fixed x € R? the random variable (x, Px) is a sum of independent, scalar-valued random
variables, and the probability of n((x, PX), (x, Ox)) > 8 will be analyzed using Chernoff bounds
and their generalizations.

Now, let’s think about the two sides of Inequality (11). They differ in three ways.

1. On the left, the supremum is inside the probability. On the right, it is outside. In other
words, to say that the right side is small means that for every fixed vector x, the probability
that (x, PX) approximates (X, OX) is high, whereas saying that the left side is small means
that with high probability, for all x the quantity (X, PX) approximates (X, OX). The two state-
ments sound very similar but are actually quite different. For example, if D is a random
date on the calendar, then for every fixed human being, the probability that their birthday
differs from D is quite high. However, the probability that every human being’s birthday dif-
fers from D is zero: no matter what date we randomly sample, there are quite a few human
beings with that birthday. So, to prove that the right side being small implies that the left
side is small, we will actually need to use some facts about vectors in R4, it doesn’t just
follow automatically from the laws of logic and probability.

2. On the right, the relative error is (1 — y)?B rather than 8. To make the numbers more
concrete, if we want to conclude that with high probability, for all x the quantity (x, Px) is
a 20% relative error approximation to (x, Ox), we will need to assume that for every x, with
high probability (x, PX) is a 5% relative error approximation to (X, Ux). (In this example,
weused 3=0.2andy =0.5.)

3. On the right side, there is an extra factor of (2¢/y)**. As you might have guessed, this
comes from taking a union bound over pairs of elements of C(d, y). In order for the en-
hanced union bound to be meaningful, the right side needs to be less than 1. Therefore, the
bound is only meaningful when Pr(n({(x, Px), (x, Ox)) > (1 — ¥)?B) is exponentially small
in d. Fortunately, exponential tail bounds such as the Chernoff bound are strong enough
to enable such a conclusion.

Proof of Lemma 4.2. We first prove the lemma in the case when Q = 1. Later we will explain how
the general case follows.

Let
C?d,y) =Cd,y)Ulw+w |w,w € C(d,y)}

Observe that if C(d,y) has N elements then C'®(d, y) has N? elements: the N elements of C(d, y)
and the 2(1;’ ) elements of the form w + w’. Assuming Q = 1 we will show the implication

Ix € R n((x, Px), (x, 0x)) = f) = Iw € CP(d, ) n((w, Pw) (W, Ow)) > 1(1 = )’B). (12)
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The probability of the event on the left side equals the left side of Inequality (11), whereas the
probability of the event on the right side is bounded above by the right side of Inequality (11) (by
the Union Bound). Hence, Inequality (11) will be established once we show that (12) is valid.

If x € RY satisfies 17 ({(x, Px), (x, X)) > ) then x # 0. Since the quantity 77 ({(x, PX), (X, OX)) is
invariant to scaling X, we may assume without loss of generality that ||x|, = 1 — y. Then, x is
a convex combination of elements of C(d,y). Say x = }2, a;w; witha; > 0, 37", a; = 1, and
{(Wi,...,w,} CC,y).

Since we are assuming Q = 1 for now, the inequality n ((x, PX) , (X, OX)) > [5) can be rewritten as
|(x, (P — 1)x) — |IxI3] > BIIXIl; = (1 — y)*8. Using x = Y| a;w; we rewrite this as

m

Z aa; <Wi, (P - ﬂ)WJ> > (1 - ’)/)zﬁ (13)
i=1 j=1
The coefficients a;a; are non-negative, and }i’; 37| @;a; = 1, so the left side of Inequality (13)
is a weighted average of the inner products <Wl~, (P-1)w j> . Consequently at least one of those
inner products is great than or equal to (1 —y)?8. Now, we use the so-called polarization identity’

1
(y,Az) = 7 [y +2,A(y +2)) — (y — 2, A(y — 2))]

withy = w;, z=w;, A = P -1, to conclude that

4(1=y)’B < (Wi + Wy (P = D)(Wi + W) = (Wi = W, (P = YW, = W)))
< [(wi + s, (P = Dy + W)+ [ (wi = W (P = Dywi = w)) (14)

hence there exists w € C@(d,y) such that |(w,(P — D)w)| > 2(1 — y)’8 > (1 — y)’B(W, W).
This completes the proof of the implication (12), which finishes the proof of the enhanced union
bound in the case Q = 1.

For the general case, since Q is a symmetric, positive definite matrix it has an orthonormal basis of
eigenvectors by, ..., b, with corresponding eigenvalues 1; > A, > --- > A; = 0. Let &’ denote the
number of positive eigenvalues, and let B be the d’ X d matrix whose rows are the vectors y4,b; .
Observe that Q = B" B, or equivalently Q = 3%, A;b;b] . To confirm this equation, right-multiply
both sides by the vector b; and verify that the two sides are equal fori = 1,2,...,d.

Now let A denote the d’ X d matrix whose rows are the vectors \/;biT, and observe that AB™

is the d’ X d’ identity matrix. (This follows from the orthonormality of the basis {by,...,b,}.)
Hence, if P’ = APAT, then

E[P'] = AQA™ = (AB™)(BA") = 1,.

Let V denote the nullspace of Q and let W denote the orthogonal complement of V. In other
words, V = {v| Qv =0}and W = {w | (w,v) = 0 Vv € V}. For any vector v € V, we have

? The polarization identity is valid in any inner product space, when A is self-adjoint with respect to the inner
product. P — 1 is self-adjoint with respect to the standard inner product on R? because it is a symmetric matrix.
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Pr({v, Pv) > 0) = 1, because P is supported on the set of positive semidefinite matrices, and
E[(v, Pv)] = (v, Qv) = 0. A random variable that is supported on the non-negative real numbers
and has expected value 0 must take the value 0 with probability 1, hence Pr({v, Pv) = 0) = 1. For
a vector v and positive semidefinite matrix P, (v, Pv) = 0 implies Pv = 0, hence we have shown
that for all v € V, Pr(Pv = 0) = 1. Now if X is any vector in R?, we can write X = v + w where
ve Vand w = W. Then

(X, Px) = (v, Pv) + 2({v, PW) + (W, Pw) = (w, Pw)
(X, Ox) = (v, QV) + 2(v, QW) + (W, QW) = (W, OW)
n((x, Px), (x, 0x)) = n({w, Pw) ,(w, Ow)) (15)

The linear transformation w — Bw is an isomorphism from W to R? with inverse isomorphism
y — A'y. Using these isomorphisms we find that

Pr (sup n((x, Px), (x, Ox)) > ﬁ)

xeR4
=Pr sug/ n(w, Pw) , (w, Ow)) > ,8) by Equation (15)
we
=Pr|sup n({A7y, PATy), (ATy, QATy)) > ,8) using isomorphismy +— ATy
yeRd’
= Pr| sup n(Ky, P'y),{y,y)) = ﬁ] using PP = APAT and 1, = AQA™
yeRd’
2e x / 1 2
< 7 sup Pr (n((z,P z),z,z)) 2 5(1 -7) ,8) from the Q = 1 case of the lemma
zeR¥’
26 2 1 2 . . .
= 7 suvI[)/ Pr (n((x, Px), (x,0x)) > 5(1 —v) ,8) using isomorphism z — Bz
we
2e 2 1 2 .
=— supd Pr (n((x, Px), (x,0x)) > 5(1 —y) ,8) by Equation (15).
xeR

O

Proposition 4.3. Let P be a random symmetric positive semidefinite matrix in R™?, and let Q =
E [P] . Suppose there exist constants ay, k, n such that for all @ in the interval (0, ay) and all vectors
x € R, the random scalar quantity (x, PX) satisfies

Pr(n({x, Px),(x, Ox)) > a) < Dek’n,

Then for all B € (0, 2ay),

Pr{sup n((x, Px),(x, Ox)) > ﬁ) < 2exp (7a’ - gﬁzn).

xeRd
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Proof. Apply Lemma 4.2 with y = 2¢7/, and let @ = %(1 — v)*B. By our choice of y and our
assumption 8 < 2a,, we have @ < @,. Hence,

sup Pr(n((x, PX) , (x, OX)) > @) < e " = 2~ #1001 < 20755,

xeRd

Applying Lemma 4.2,

o) 2d . )
Pr(SUP n(x, Px))) > ,8) < 2(—6) e 5 = 275,
Y

xeR4

which completes the proof. O

Remark 4.1. In applications of Proposition 4.3 it is often the case that P is a sum of independent
random matrices, and that the parameter n is equal to, or is a function of, the number of indepen-
dent summands. In these applications the parameter «, on the other hand, is typically a universal
constant that doesn’t scale with n. This explains the (somewhat strange and arbitrary) decision
to distinguish the constant « from the parameter 7 in the statement and proof of Proposition 4.3,
even though « and n never appear separately but only in the form of the product kn. In other
words, the decision to represent the number «n as a product of a constant x and a parameter # is
purely for mnemonic purposes, to make it easier to work out the implications of Proposition 4.3
in settings where there is a natural “problem size” parameter, n, representing the number of data
points, vertices of a graph, or some such quantity.

4.1 Analyzing the SVD on random samples

As a first application of Proposition 4.3, we analyze the sample complexity of estimating the top
singular vector of a Gaussian covariance matrix, given independent random samples from the
distribution.

Suppose ay,...,a, € R? are independent random samples from the distribution N (0, BBT). Let
AT denote a n X d matrix whose n rows are the vectorsa/,...,a,, and let ¥ denote the top right

s Ay

singular vector of A”. We wish to understand how large n must be, as a function of d, &, d, so that
Pr((v,vi)>1—-¢)>1-56,

where v is the top right singular vector of B'.

To see how this problem relates to matrix tail bounds such as Proposition 4.3, observe that

E[AAT] = ) Elaa]] = nBB’,
i=1
so if we define P; = a,a’, P = P +---+ P, = AAT, and Q = E[P] = nBB", we see that
Proposition 4.3 asserts that for n large enough, with high probability AA™ is a good approximation

to nBBT, in the sense that for all x € R? the inner product (x, AA"x) = ||ATx||3 approximates
the inner product (x, nBB"X) = n||B"x||} with small relative error. Since ¥ is the unit vector that

28



maximizes ||ATx|[3 and v; is the unit vector that maximizes n||B"x|[3, if |Ax|3 ~ n||B"x|[3 for all
X, then it should be possible to prove that the Vv is a good approximation to v;.

Before we can apply Proposition 4.3 we need to be able to show that for all x € R¢, the random
variable (X, PX) approximates its expected value with small relative error. This would be easy
to do, using the Chernoff bound, if the variable (x, PX) were a sum of independent [0, 1]-valued
random variables, but it’s not. Instead

(x, Px) = Zn: (X, Pix) = Zn: (x,a;a/x) = Zn: (x,a,)?,
i=1 i=1 i=1

and each summand (x, a;) a Gaussian random variable with distribution N (0, ||BTX||§). Thus, we
need a tail bound for sums of squares of Gaussian random variables that is qualitatively similar
to the Chernoff bound. The following lemma serves that purpose.

Lemma 4.4. If X, X5, ..., X, are independent, identically distributed Gaussian random variables,
each with expected value zero, and Y = X7 + -+ - + X2, then for 0 < @ < 1 we have

Pr(n(Y,EY) > a) < 2¢75%7,

Proof. For any A > 0, the distribution of n(¥, EY) is uneaffected if we replace ¥ with 1Y. Hence,
we may assume without loss of generality that each X; has variance 1. Letting ¥; = X7, the
cumulant generating function of Y; is

mo:mEVﬂ:mE&W] (16)

To compute the expected value on the right side we can directly evaluate the integral.

E[etxg]: /zif FEm
T Jooo
1 <
— ,ﬂfwe_Z(]_ZI)xzdx
1 1 1
— . - v d
V1—2 Vznl;e .
B 1
“N122r

fort < % (Here, we used the substitution u = V1 — 2¢x to evaluate the integral, and the assump-

tiont < % was necessary in order for the factor V1 — 27 to be a positive real number.) Substituting
this formula for the expected value into Equation (16), we obtain the formula

1 1
mg:im&_%y (17)

which is valid for ¢ < % Now, since Y is the sum of n independent random variables each with

cumulant generating function K(f) = % In (ﬁ) , the cumulant generating function of Y is Ky (¢) =
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5 In (1_#%) . Using Lemma 3.3, we have

1 1
Pr(Y > (1+@)E[Y]) < exp (g 1n(1 - 2t) — (1 + a)]E[Y]) - exp(g 1n(1 - 2t) —(1+ a)tn). (18)
The exponent on the right is minimized when 7 = 777 and ﬁ =1+ @. Then
1
Pr(Y > (1 + )E[Y]) < exp (g (In(1 + o) a)) < exp (—gozz ) (19)

where we have used the inequality @ — In(1 + @) > ‘—l‘az, which is valid for 0 < @ < 1. (The

validity can be confirmed by verifying that the left and right sides are equal when @ = 0, and the
derivative of the left side exceeds the derivative of the right side when 0 < @ < 1.)

a 11 .
50 and 73 = 1 — @ implies

A second application of Lemma 3.3 with 7 =

Pr(Y < (1 — @)E[Y]) < eXp(E ln(

. ) (- a/)m) < exp(g (@ +1In(1 - a/))) < exp(—%axz )

1+2¢

where we have used the inequality —a — In(1 — @) > %az, which is valid for 0 < @ < 1. (Again,
the validity can be confirmed by verifying that the left and right sides are equal when @ = 0, and
the derivative of the left side exceeds the derivative of the right side when 0 < a < 1.) m|

Corollary 4.5. If X, Xs, ..., X, are independent, identically distributed Gaussian random variables,
each with expected value zero, and Y = X% + e+ X,%, then for0 < & < 1 we have

Pr(Y<(1-gEY)<e ™, Pr(Y2(1+& EY)<e "
Proof. Using Inequality (19) from the proof of Lemma 4.4, with a = 2¢ + £, we find that
Pr(Y > (1 +6)°EY) = Pr(¥ = (I + @)EY) < exp (g (In(1 + o) a)).
The inequality In(1 + £) < & along with the equation 1 + @ = (1 + £)* imply
In(l1+a)—a=2In(l+&)-2e—-¢&" =2(n(l + &) — &) — > < —&7,

so Pr(Y > (1 + &)’EY) < eXp(—%szn) as claimed.

Using Inequality (20) from the proof of Lemma 4.4, with @ = 2¢ — &2, we find that
Pr(Y > (1 - £)’EY) = Pr(¥ > (1 - )EY) < exp (g (@ +In(1 - a/))).

The inequality In(1 — &) < —& along with the equation 1 — @ = (1 — &) imply
a+In(l—a)=2e-¢&+2In(l —&) =2(s + In(1 - &)) - &* < &,

so Pr(Y < (1 — £)*EY) < exp(—1&’n) as claimed. |
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We now have all the ingredients in place to analyze the sample complexity of estimating the top
singular vector of a Gaussian covariance matrix using SVD.

Proposition 4.6. For a d X d matrix B with singular values oy > 0, > 03 > 04, suppose that A is
a d X n matrix whose columns are independent samples from N (0, BB"). Let v, denote the top right
singular vector of B', and let V denote the top right singular vector of AT. If0 < £ < 0.3, > 0, and

2\—2
n> (1= 2) " (7d+102/8)) then
1
Pr(I@, vl 2 1-8) > 1 -4,

Proof. Leta,...,a, denote the columns of the matrix A. For any x € R? we have
(x,AATX) = Z (x,a;)?,
i=1

and each of the inner products (X, a;) is independently sampled from a Gaussian distribution with
mean 0 and variance ||BTX||§. According to Lemma 4.4, forany 0 < @ < 1,

Pr (n((x, AATX) , (x, nBBTX)) > @) < 275",

Now applying Proposition 4.3 with x = %, we find that forany 0 < 8 < 1,

2
Pr (sup n({x,AATx),(x,nBB'X)) > ﬁ) < 2eMmm, (20)

xeRd

Let g = (1 - 0'%/0'%) (s - %82). Since & < 0.3 we have

0_2 2 1 2 0_2 2
B = (1 - —5) 82(1 - Es) > (1 - G—?) & - (0.85)°
B*n > 100 - (0.85)% - (7d + In(1/6)) > 72(7d + In(2/6))

BZ
7d = Zon < ~In(2/6) = In(6/2)

hence the right side of Inequality (20) is less than 6.
We have shown that with probability at least 1 — ¢, it holds that

sup n({x, AATX),(x,nBB'x)) < B. (21)

xeRd

To conclude the proof we need to show that this property implies [(V, v{)| > 1—&. By the definition
of the SVD, ¥ is the unit vector that maximizes (v, AATv) . In particular,

(vi,AATv) <(v,AATV). (22)
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Now let ¥ = av, + bw, where w is a unit vector orthogonal to v, and a’> + b*> = 1. Recall from
the definition of singular values that for all unit vectors w orthogonal to vy, ||[B"W||, < 0, which
implies (w, BB"W) < 075. Applying Inequality (21), we find

(vi,AATv)) > (1 = B){v,nBB"v,) = (1 — B)no™ (23)
(V,AA™9) < (1 + B) av, + bw,nBB'(av| + bw)))
= (1 + B)n(a*o? + b*o?)

2
=1 +,3)ncr%(1 —b2(1 ——2)). (24)
Combining Inequalities (21), (23), (24), we find that
2
(1 =pBnos < (1 +Pno; (1 - (1 - —2))

_ 2
! ﬂ31—b2(1—2)

2

1+8 o
2
25 zbz(l—a—i)
1+ o
o2\
23(1——3 > b*(1+B) > b
0

Qe—g&* > b
1-Qe-e)<1-b*=d

Since the left side of the last line is (1 — €)%, we have shown that (1 — &)> < @, or|a| > 1 —&.
Recalling that v = av, + bw with (w, v;) = 0, we have

KV, vi)l = la{vi,vi) + b{w,v))| = |a| > 1 — &,

as desired. O

4.2 The Ahlswede-Winter Inequality

In this section we present a stronger exponential tail bound for random matrices, in which the
probability of violating the bound has only polynomial dependence on the dimension, rather
than the exponential dependence in Proposition 4.3. Unfortunately the proof of the inequality is
beyond the scope of these notes.

Theorem 4.7 (Ahlswede-Winter Inequality). Suppose Py, X, ..., P, are mutually independent
random, symmetric, positive semidefinite d X d matrices, let P = Py + --- + P,,, and let Q = E[P].
Ifr > 0 is a scalar such that for all i and allx € R?, (x, P;X) < % (x, Ox) with probability 1, then for
allB € (0, 1),
1
Pr(sup n(x, Px), (x, 0x)) zﬁ) < 2d-e @ (25)

xeRd
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To compare the Ahlswede-Winter Inequality with Proposition 4.3, it is useful to note that the
assumption (X, P;x) < } (x, Ox) implies, using the Chernoff Bound with the [0, 1]-valued random

<<X’P"X>, that forallx e R?and all0 < a < 1,
X,0X)

variables Y; = r

2

Pr (((X, PX) , (X, OX)) > @) < 27397 = 2¢7*"

where « = r/(3n). Hence, we can conclude using Proposition 4.3 that

K 1
Pr [ sup n({x, Px), (X, OX)) > ﬁ) < 267 79 = 0T L g

xeR4

The Ahlswede-Winter Inequality improves upon this bound in two respects: the constant 2—17 is
improved to }L, but much more importantly the factor ’? is improved to d. Recall that Propo-
sition 4.3 is proven by taking the union bound over the exponentially number of vectors that
constitute the set C(d, 2¢7/?), and the factor 2¢’? on the right side of the inequality reflects the
exponential number of “bad events” in this application of the union bound. Replacing this factor
of 2¢’? with 2d on the right side of the Ahlswede-Winter Inequality means that the inequality
is as efficient, quantitatively, as a union bound over only 2d “bad events” Conceptually, it is as
if we only need to worry about n({x, Px), (X, Ox)) being large as x ranges over a basis of R?. In
actuality, the proof of the Ahlswede-Winter Inequality doesn’t use the union bound at all, so this
discussion is only meant to give some intuition about how to evaluate the power of the inequality
in quantitative terms.

4.3 The Stochastic Block Model

As a second application of matrix tail bounds, we investigate the “community detection”problem
in which one is given the adjacency matrix of an undirected graph (e.g., a social network) and one
wants to find a labeling of the vertices such that edges occur more frequently between vertices
that share a label than between differently-labeled vertices.

A frequently used model of community structure in networks is the stochastic block model, which
defines a probability distribution over graphs with a given vertex set, V. In this model, each vertex
u of the graph has a label o, and the probability that the graph contains an edge between « and
v, conditional on the labeling o, is

{pin ifo, =0,

Puw = .

Do =ifoy, # oy

Here, pi, and p,, are two parameters of the model satisfying O < poy < pin < 1. The labeling o
may be modeled as random or non-random. In our model we will treat o as a fixed, non-random
labeling. However, the input to the community detection problem consists only of the vertices
and edges of the graph; the labels of the vertices are not revealed in the input but must instead
be (approximately) inferred from the given data.

In this section we will make two simplifying assumptions.
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1. There are only two possible labels for a vertex: the labeling o will be represented as a
vector in {£1}". Note that this means two vertices u, v have the same label or different
labels according to whether 0,07, = 1 or 0,0, = —1.

2. The graph has an even number of vertices, n, and the labeling divides them into two groups
of equal size: ),y 0, = 0.

Under these assumptions, we will be interested in the question: for what values of n, pi,, pou can
we calculate a labeling & that is significantly more correlated with o than a random labeling?
One way of formalizing this objective is to insist that |(0,07)| > (1 — 2¢)n for some specified
& > 0 When one finds a labeling that meets this objective, it means that either ¢ or its negation,
—0, labels at least 1 — ¢ fraction of the vertices correctly.

We can begin to see how this subject relates to random matrices when we think about the adja-
cency matrix of the graph G. In the vector space R" of real-valued functions on the vertices of
G, there is a standard basis containing, for each vertex v, a vector e, that represents the function
taking the value 1 at v and 0 everywhere else. An edge e = {u, v} in the graph is represented in
the adjacency matrix by setting two entries to the value 1: one in row u# and column v, another
in row v and column u. In other words, the adjacency matrix of a graph G with vertex set V and
edge set E is
Ag = Z ee +ee,..
{uv}eE

When edges of G are sampled independently at random (as in the stochastic block model, when
the labeling o is fixed) the individual terms of this sum become independent random matrices.
However, we are not quite ready to apply Proposition 4.3 to reason about the random matrix Ag,
since the summands e,e] + e,e; are not positive definite matrices. To circumvent this difficulty,
we will make use of a different sum of random matrices, where the terms are symmetric and
positive semidefinite by construction.

L = Z (eu - ev)(eu - ev)T (26)

{u,v}eE

The matrix Lg is called the Laplacian matrix of G. Its digaonal entries are the degrees of the
vertices of G, because the matrix e,e] appears once in the sum for every edge {u,v}. Its off-
diagonal entries match those of —Ag, the negation of the adjacency matrix. For the stochstic block
model with labeling o~ we can calculate E[L;] quite easily. Let p = %(pin+ Pour) and g = %( Pin—Pout)s
so that p;, = p + ¢ while poy = p — g. We find that

%(pin + Pout) — Pin fu=v
E[LG]M,V =193 Pin ifu Vv, 0, = (o = pndu,v - p—-qo,0,. (27)

—Pout if Oy # 0y

This formula for the entries of the expected Laplacian, E[L;], can be summarized more succinctly
by the equation
E(Lg] = pnl — p11" —goo'. (28)
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From Equation (28) we can deduce’ the eigenvectors and eigenvalues of the expected Laplacian
matrix E[Lg]. The smallest eigenvalue is 0, with eigenvector 1. The next-smallest eigenvalue
is (p — g)n, with eigenvector 0. The remaining eigenvalue is pn, with multiplicity n — 2. The
eigenspace corresponding to this eigenvalue is the (n—2)-dimensional space of vectors orthogonal
to both 1 and o

Now let’s consider the random matrix L. The smallest eigenvalue is again 0, with eigenvector
1, because in the sum defining the Laplacian Lg, each of the summands (e, — e,)(e, — e,)" has
1 in its nullspace. When X ranges over unit vectors orthogonal to 1, the expected value of the
inner product (X, LX) is minimized when X is parallel to o, which for unit vectors x occurs when
X = + V1/n - 0. Hence, a natural plan for identifying the community structure in the network is
to compute the eigenvector y of L; corresponding to its second-smallest eigenvalue. This vector
will be orthogonal to 1, and if the eigenvectors of L are close to those of E[L;] then y should be
close to 0.

Algorithm 2 Stochastic block model algorithm
1: Compute the Laplacian matrix L and its eigenvectors.
2: Let y denote the eigenvector corresponding to the second-smallest eigenvalue of Lg.
3: Output the labeling & defined by setting 67, = +1 if y, > 0,6, = -1 if y, < 0.

To analyze the correctness of the algorithm, the following lemma concerning symmetric matrices
and their eigenspaces will be useful.

Lemma 4.8. Suppose A is a symmetric matrix with eigenvalues A;, Ay, ..., Ax and corresponding
eigenspaces V1, V,, ..., Vi. The spaces Vi, . .., Vi are pairwise orthogonal (meaning each vector in V;
is orthogonal to each vector in V; when 1 < i < j < k) and every X € R" can be written uniquely in
the formX = a1X; +a>Xp +- - - +a; Xy, whereX; is an element of V; satisfying||x;|l, = 1, fori = 1,... k.
Furthermore, ||||X§ = a% + a% + et a,%, and

(x,AX) = /ha% + /l2a§ + e+ /lkai.

3 The derivation of the eigenspaces and eigenvalues of E[L¢] is accomplished by repeatedly applying the fol-
lowing principle: if A and B are two matrices and v is an eigenvector of both A and B, with eigenvalues 1, and Ap
respectively, then v is also an eigenvector of A + B with eigenvalue A4 + Ap.

Applying this principle to E[Lg] = pnl — pl1T — goo™, we can reason about the eigenvalues as follows. First,
the matrix A = pnl is a scalar multiple of the identity matrix, so every vector is an eigenvector of A with eigenvalue
pn. Next, the matrix B = —p117 is a symmetric rank-one matrix, so it has two eigenspaces: a one-dimensional
eigenspace generated by 1, with eigenvalue —pn, and an (n — 1)-dimensional eigenspace consisting of all the vectors
orthogonal to 1, with eigenvalue 0. Finally, the matrix C = —goo’" is also a symmetric rank-one matrix, so it also has
two eigenspaces: a one-dimensional eigenspace generated by o, with eigenvalue —gn, and an (n — 1)-dimensional
eigenspace consisting of all the vectors orthogonal to o, with eigenvalue 0. Putting all this information together,
we conclude that the matrix E[Ls] = A + B + C has a one-dimensional eigenspace generated by 1, with eigenvalue
pn— pn = 0, another one-dimensional eigenspace generated by o, with eigenvalue pn — gn = (p — ¢)n, and finally an
(n—2)-dimensional eigenspace consisting of the vectors orthogonal to both 1 and o, with eigenvalue pn. Note that in
order for us to derive the eigenspaces and eigenvalues using this method, it was convenient that 1 was an eigenvector
of C and that o~ was an eigenvector of B; both of these convenient facts were true because of our assumption that
the two communities are of equal size, i.e. (1,0) = 0. Without that assumption, the calculation of the eigenspaces
and eigenvectors of E[Lg] would have been more involved.
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Proof. The lemma is clearly true when A is a diagonal matrix. For the general case, we use the
fact that every symmetric matrix can be written in the form A = QDQ" where Q is orthog-
onal and D is diagonal. Letting Wy,..., W, denote the eigenspaces of D, we find that A has
eigenspaces V; = QW,; for i = 1,...,k, with the same eigenvalues. These are pairwise or-
thogonal since left-multiplication by Q preserves orthogonality. Furthermore, if x = Qy then
(x, AX) = (Qy, ODy) = (y, Dy) since Q preserves inner products. Hence, the formula for (x, Ax)
follows from the corresponding formula for (y, Dy) . m]

Proposition 4.9. Ifn € N satisfies the inequality n > % In(2n/6) then with probability at

least 1 — 6, Algorithm 2 outputs a labeling & such that either & or —0 labels at least (1 — &)n vertices
correctly.

Proof. The proof will be an application of Theorem 4.7, which means that we need to write L as
a sum of independent random symmetric positive semidefinite matrices. Let W denote the set of
unordered pairs of vertices {u, v}, and for any {u, v} € W let Y,,, equal 1 if {&, v} € E, 0 if not. Then
we can express Lg as

LG = Z Yuv(eu - ev)(eu - ev)T = Z Puv,
{u,v}ew {u,v}ew

where the matrices P,, = Y, (e, — e,)(e, — e,)" are independent, random, symmetric, positive
semidefinite matrices. We wish to apply the Ahlswede-Winter Inequality, with P = }, ew Puv
and Q = E[P] = L. To do so, we need to find a value of r such that for all x € R¢ and all {u, v} € W,
(x, P,,x) < % (x, Ox) . We will decompose x as a sum of eigenvectors of Q and apply Lemma 4.8.
Let 1 = V1/n-1and & = V1/n - o denote the unit-length eigenvectors of Q corresponding to
the eigenvalues 0 and (p — ¢)n, respectively. If we write X = al + bd + cw, where w is orthogonal
to 1 and o and ||w||; = 1, then from our calculation of the eigenvalues of Q we know that
(X,0%) = b*(p—q@n + *pn > (b> + ) (p — ¢)n.

Meanwhile,
<X’ Pqu> = Yuv <X, (eu - ev)(eu - eV)TX>
= Yuv <X’ €, - ev>2
_ 2
=Y, <a1 + bo + cw, e, — ev>
=Y, (b + cw, e, — e,)’
< Y 160 + cwlf3 lle, — |3 = 2Y,,(b* + ) < 2(b* + ¢2).

Hence, if we set r = @ then (w, P,,w) < %(W, Qw) is guaranteed to hold. Applying the
Ahlswede-Winter Inequality, we conclude that for any 5 > 0,

Pr (sup n((x, Px), (x, Ox)) 2,8) < - e_%’gm.

xeR”

Let 8 = p_‘;i 2q 7> and observe that

B __&q
1-p 20p-9
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an equation which will justify this choice of 8 when we use it later on. Suppose that

sup n({x, Px), (x, 0x)) < B. (30)

xeR”

We wish to prove that under this assumption, the relation |(y,&)|*> > 1 — & holds. The assump-
tion (30) holds with probability at least 1 — 2n - e~ (=P8 which is greater than 1 — 6 when
n> ;i%%gﬁln(Zn/é)

Since y is orthogonal to 1, it may be written as a sum of eigenvectors of Q belonging to the other
two eigenspaces: y = ad + bw, where [|[w||; = 1 and (1, w) = (o, w) = 0. Assuming without loss
of generality that ||y||§ = 1, we have @ + b* = 1. Now, by assumption (30), we have

(@, Lo0) < (1+5)(.05) = (1 +)(p - q)n
(v. Lay) 2 (1 - B)(y. Qy) = (1 - B) [@* (o, Qo) + b (w. QW)
= (1-p)|a*(p = gyn + b’ pn| = (1 = B)|(p — gn + bqn|.

Since y was chosen to minimize (y, L;y) among all vectors orthogonal to 1, and ¢ is orthogonal
to 1, it must be the case that (y, Lgy) < (7, L;0). Hence,

(1=P)[(p— @+ bqn| < (1 + B)(p - g)n
(p—g)n+ b*qn < 1+

(p—gn 1=
b? 2
1+ q§1+—ﬁ:1+ &
P—q 1-p P—q

where we have used Equation (29) on the last line. It follows that »*> < & and a®> > 1 — &, hence

Iy, o) | =lal = V1 —e.

Our final task is to prove that 4" labels at least 1 —& fraction of vertices correctly. Assume without
loss of generality that (y, ) > V1 — ¢; otherwise, replace y with —y and 6 with —6. Now let z
denote the vector defined by

{\/1/11 -0, ify,o,>0
luy =

0 if y,o, <0.

Observe that y,z, > y,0, for all u, so (y,z) > (y,0) > V1 — &. By the Cauchy-Schwartz Inequal-
ity, |lyllllzll. > (y,z). Since |ly|l, = 1, we find that ||z||> > (y, 2’ >1-¢ Recalling how z was
defined, this means there are at least (1 — &)n vertices u such that y,o, > 0. Every such u will be
correctly labeled by Algorithm 2. O

Remark 4.2. Using the inequality v2n/6 > In(2n/6), we can deduce that the inequality n >
32p? 2048 p*
&2q*(p—q) gt (p—q)2°
greater than the true sample complexity of community detection, since the inequality v2n/6 >

In(2n/6) has a great deal of slack when 7 is large and ¢ is small.

In(2n/0) is satisfied whenever n > However, the latter bound is typically far
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5 Randomized Algorithms

In Sections 3 and 4 we saw some applications of probability theory to average-case analysis of
algorithms: the study of how algorithms perform on typical samples from a probability distribu-
tion. Three examples were the analysis of empirical risk minimization for hypothesis selection,
singular value decomposition on Gaussian random samples, and community detection in the
stochastic block model.

The other area where probability theory meets analysis of algorithms is randomized algorithms,
in which the input data is not assumed to be random, but the algorithm uses internal randomness
(metaphorically, it tosses coins) and the goal is to show that even for worst-case inputs, the al-
gorithm satisfies some correctness (or approximate correctness) property, with high probability
over the outcomes of its own coin tosses.

5.1 Dimensionality Reduction

Suppose you have a dataset consisting of vectors X, Xy, ..., X, in R%. For example, this could be
a collection of photos, each represented as a vector. The representation of a photo could be a
vector of raw pixel values or, more likely, the output of an image processing algorithm. We are
primarily interested in the case when n and d are both quite large. We will be implicitly assuming
that the encoding of data as vectors has the property that similarity of data items translates to
proximity, in the L, norm, between their corresponding vectors.

We are interested in projecting the data into a lower dimension, &, such that all distances between
pairs of points are approximately preserved. This greatly reduces the computational cost of work-
ing with the data (e.g., searching for points near a specified query point) and the communication
cost of sending information about the data points over a network.

In this section we will analyze a very simple dimensionality reduction algorithm due to Johnson
and Lindenstrauss. The idea is simply to project the data from R to R* using a linear transfor-
mation represented by a matrix with independent, identically distributed Gaussian entries. For
now we will leave the dimension of the target space, k, as an indeterminate. Later we will see
that for the purpose of preserving distances up to multiplicative error &, it is appropriate to set

k=0("%)

Lemma 5.1 (Johnson-Lindenstrauss Lemma). For anyXy,Xs,...,X, € RY and any0 <¢g,0<1,if
k > 41n(n/6)/e* andR is a kxd random matrix with independent entries drawn from the distribution
N, %), then with probability at least 1 — § the inequality

(I = ollx; = xjll2 < |IRx; = Rxjll, < (1 + &)lIx; = Xl

holds forall1 <1i,j < n.
Proof. Consider any vector y € RY. (Later we will be setting y = X; — x;.) Our first task will be

to compute the expected value of ||Ryl[3. Denote the rows of R by ry,...,r. Then the compo-
nents of the vector Ry are (r;,y),(r2,y),...(rsy). Letting ¥ = ||Ry||§ we see that Y = Zle Xl.2

38



where the random variables X; = (r;, y) are Gaussian with distribution N (0, %llyll%). This implies
that E[Xiz] = %Ilyllg for all i and that E[Y] = ||y||§. Furthermore, using steps from the proof of
Lemma 4.4, for 0 < &£ < 1 we have

Pr(Y > (1 + & llylD) < e %, Pr(Y < (1 —&)yl}) < e ** (31)

As y ranges over all (;) vectors of the form x; — X;, we can use the Union Bound together with
inequality (31) to verify that

Pr(Vi, j (1 - &)’llx; — x/[13 < [IRx; — R [} < (1 + &)llx; = x,[13) > 1- 2(3)6-%82'& (32)
Since 2(;) < n?, the probability on the right side will be greater than 1 — § if e 2% < 5/n?, which
happens when k > 41n(n/d)/&>. o

5.2 Sparse Recovery

We have seen that a random projection from R” to R21°€/e) approximately preserves the dis-
tance between every two elements of a finite set of n vectors. In this section we will see that it
also approximately preserves the distance between every two sparse vectors, i.e. those with few
non-zero components. Putting this fact to use, we will show how to efficiently recover a sparse
vector X given the vector Rx, where R is a Gaussian random matrix.

Lemma 5.2. Forany s € Nand0 < &,6 < 1, ifk > 72e7%(log(2/5) + 7s) and R is a k X s matrix
with independent random entries drawn from N (0, %), then with probability at least 1 — 6 every
x € R’ satisfies

(1 = o)lixli5 < IRxl5 < (1 + &)Xl (33)

Proof. Letr/,... ,rkT denote the rows of R. For each i, the random vector r; is a sample from

N (0, %]l), soE[rr/] = %IL. Consequently the matrix P = R'R = Zle r;x] is a sum of independent

random symmetric positive definite matrices, and
: 1
E[P]= ) E[rr']=k--1=1.
[P] Z [ex]] =k

Applying Proposition 4.3 we find that

Pr (sup n({x, R"Rx), (X, X)) > 8) < 2exp (7s - %k) <96,

XeRS

by our assumption that %k—7s > In(2/6). Using the relations (x, R"Rx) = ||Rx||; and (x,x) = [x||3,
we find that the relation n({x, R"TRX), (X, X)) < ¢ is equivalent to inequality (33) in the statement
of the lemma. Therefore, that inequality holds with probability at least 1 — ¢ as claimed. O
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Definition 5.1. A vector x € R”" is s-sparse if at least n — s coordinates of X are equal to zero. A
matrix R satisfies the s-restricted isometry property with constant ; if the inequalities

(1 =&)Xl < [IRxl[3 < (1 + &,)lIxIl3 (34)
are satisfied for every s-sparse vector x.

Proposition 5.3. For every s > 3 and0 < &,6 < 1, ifn > s and k > 72¢7(s In(n) + In(2/5)), then
a k X n matrix R with independent random entries sampled from N (0, %) satisfies the s-restricted
isometry property with constant , with probability at least 1 — 6.

Proof. For any subset J C [n] with |J]| = s, let R; be the submatrix of R obtained by selecting the
subset of columns indexed by J. Our plan is to use Lemma 5.2 to prove that with high probability
R preserves the length of each vector x that satisfies x; = O for all i ¢ J, then use the Union Bound
over all choices of J to deduce that R satisfies the restricted isometry property with probability
at least 1 — 6. Let m denote the number of subsets J C [n] with |J| = s, and note that

n s
m:( )<(%) <n’,
s

since the identity (';) < (%)S holds for all n, s and our assumption s > 3 implies ¢ < 1. Note that
In(2m/6) < sIn(n)+1n(2/9). According to Lemma 5.2, with probability at least 1 —d/m, the matrix
R; obtained by selecting the subset of columns of R indexed by J satisfies

Vy e R* (1= o)llylls < IRyyll3 < (1 + &)llyll3.

which implies that (34) is satisfied by every x € R" with sparsity pattern J. Taking the union
bound over all J, we find that with probability at least 1 — d, R satisfies the s-restricted isometry
property with constant &. m]

The main application of matrices with the restricted isometry property is to solve an inverse
problem called sparse recovery where the aim is to identify a sparse vector x € R" given the
value of b = Rx € R*. When k < n this is an underdetermined linear system, meaning there
are infinitely many vectors y solving the equation Ry = b. The set of all such solutions forms a
(n — k)-dimensional affine subspace of R", but we will see that there is a unique s-sparse solution
provided that R satisfies the 3s-restricted isometry property with & < % Furthermore, we’ll see
that there is an efficient algorithm to find the sparse vector X satisfying Rx = b.

Definition 5.2. A vector z € R" is mostly s-sparse if there is an index set J C [n] with |J| < s

such that
NEPN

ieJ igJ

By definition, a matrix with the s-restricted isometry property approximately preserves the 2-

norm of every s-sparse vector. Our next lemma shows that the length of every mostly s-sparse

vector is also approximately preserved, albeit with a worse approximation factor, if we make

the stronger assumptions that the matrix satisfies the (3s)-restricted isometry property and that
1

& < 3. (The upper bound on ¢ is used to ensure that the constant factor on the right side of

Inequality (35) below is strictly positive.)
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Lemma 5.4. Suppose A is a matrix that satisfies the (3s)-restricted isometry property with constant
g > 0. Ifz is mostly s-sparse then

zl > 5 (VT=2 = /152 el (35)

Proof. Without loss of generality assume that the coordinates of z are ordered such that |z;| >
|zo| > -+ > |z,|. Also assume without loss of generality that n = (2m + 1)s for some positive
integer m. (Otherwise, pad the vector z with zeros and increas the number of columns of A from
n to (2m + 1)s, while continuing to satisfy the restricted isometry property.)

Break the coordinate range [n] = [(2m+1)s] into m+1 blocks Jy, Ji, .. ., J,, such that J consists of
the first s coordinates, J; consists of the next 2s coordinates, J, consists of the next 2s coordinates
after that, and so on. In other words,

Je=1{i|i>0, 20-1)s <i <2+ 1)s}.

Let z; be a vector obtained from z by preserving the coordinates in block J; and setting all other
coordinates to zero. In other words,

z, ifQ—Ds<i< 2+ 1)s
(Ze)i = {

0 otherwise.

Since z is mostly s-sparse, and we are assuming the coordinates are sorted so that |z;| > |zp| >
- > |z,|, we have
lzolly > llz) + 2o + -+ - + 2,,]];. (36)

Another useful observation stemming from the way coordinates are ordered is that ||z;, [l <
2s - ||1zi|ly, because the absolute value of every coordinate of z;,; is less than or equal to the ab-
solute value of every coordinate of z;, Combining this observation with the inequality ||z;;|, <

V25||1Zi+1]lo, We obtain

1
Zivi2 £ —=llZill;.
V2s

Now, we can bound ||Az||, from below as follows.

lAzZ||, = ||A(zo + Z1) + AZy + AZ3 + - - - + AZ,||>
> ||A(zo + 2))|l2 — (IjAZ2n + l|AZs|| + - - - + [|AZ,|])

> V1 —¢llzg + 211l — V1 + &(llzallz + l1z5ll2 + - - - + [1Z,ll2) (37)

V1 — &llzoll> - \/ (”ZIHI +zally + -+ + Zi 1)

V1 — &llzoll> -

%

”Zl +Zy+ o+ Zylly

> V1 —é&llzoll, —

1+¢
. 38
s [zl (38)

In line (37) we have used the inequalities V1 — &lljzo + z1, < [|A(Zo + z))l, and V1 + &ljz|l, >
|Az,||», both of which are justified by the (3s)-restricted isometry property with constant .
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Let o be a vector in {—1,0, 1}* with the same sign pattern and sparsity pattern as zj,, meaning
that

1 ifZ()l' >0
;=40 if 20, =0
-1 ifZ()] < 0.

Then (0, zy) = ||Zo||;, so the Cauchy-Schwartz inequality implies

lzolli < lloll2 llzoll, = \/§||Zo||2-

Substituting this bound into inequality (38) above, we find that

1Az, > («/1 . ;‘9] 1zollo. (39)

To conclude the proof of the lemma we need to show ||z, > %||z||,Lett = %||Zo||1 = % (lz1] + 22| + - -

and observe t > |z,|. Every component of the vector w = % (zy + 2, + - - - + z,,) belongs to the in-
terval [-1, 1], because |z;| < |z,| £ t for i > 5. Hence,

n n
2 2
Wiz = > w? < > wil = [Iwll
i=1 i=1
1
2 2 2 2 2 2
Iz = zoll; = 7lIwlly < FlIwlly =tz + -+ + zully < tlizolly = —lizolly < lzoll>- (40)

By the triangle inequality, |||l < ||Zoll> + |1z — Zo|l,. Combined with Inequality (40), this implies
llzll> < 2||zo||, and completes the proof of the lemma. O

We will use Lemma 5.4 to analyze the following algorithm for sparse recovery: of all the vectors
x that satisfy Rx = b, output one with minimum L, norm. The L, norm is a convex function, so
the problem can be solved efficiently using a convex minimization algorithm, such as gradient
descent.

Proposition 5.5. Suppose R is a matrix that satisfies the (3s)-restricted isometry property with
constant & < % X is an s-sparse vector, and b = Rxy. Among the solutions of the equation Rx = b,
the vector X, is the unique one with minimum L, norm.

Proof. Suppose X is a solution of minimum L; norm to the equation Rx = b. We must prove that
X; = Xo. Let Z = X; — X, and observe that Rz = RX; —Rxgo =b—-b =0. Let J = {i | xo; # 0} and
observe |J| < 5. We have

n n
hill = > el = > o+ zil = ) o+ zil + ) Ll
i=1 i=1

ieJ igJ

> > ol = )il + D lail = Iixolly = > el + ) Lzl

ieJ ieJ i¢J ieJ igJ
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Since |[x;]|; < |[xoll; by our choice of [|x; ||, it follows that }’,.; |zil > ¢/ Iz, i.e. Z is mostly s-sparse.
By Lemma 5.4,

1 l1+e
0 = ||Rz[|, > 5[ Vl-&g- 5 )||Z||2-

Our assumption & < % implies 1 — & > 1¥£, 50 the factor % ( Vl-¢- ,/%) on the right side is

R
strictly positive. It follows that ||z|]l, = 0, so 0 = z = X; — X, as desired. O

5.3 Data Streaming and Sketching

The random projections analyzed in Section 5.1 and Section 5.2 bear some resemblance to the
random hash functions used in data structures and load balancing. In this section we survey
some of the applications of hash functions to the analysis of datasets that are too large to fit in
the computer’s memory all at once.

In the streaming model of computation, an algorithm observes a sequence ay, a,, ..., a, of data
items, each represented by at most b bits. Thus, the set of potential data items (called “tokens”
henceforth) has size m = 2”. The algorithm has a working memory of size s bits, where s is
bounded by a polynomial function of b and log(n). Hence it is infeasible to store each data item,
which would require space s > b - n, and it’s also infeasible to store a count of how many times
each token was seen in the data stream, which would require space s > 2° log(n).

Some of the typical objectives of streaming algorithms are to find the most frequently occurring
element (or elements) in the data stream, approximate the number of distinct elements, or ap-
proximate the p frequency moment, 3 i f;’ , where f; denotes the number of occurrences of the
token j in the stream.

5.3.1 Finding frequent elements

To illustrate the model, we begin by presenting an algorithm of Misra and Gries that uses space
s = O(k(b + log n)) to find every token that occurs more than n/(k + 1) times in the stream. The
algorithm allocates its storage space for a k-tuple of tokens by, ..., b, and a k-tuple of counters,
Cls...,Cx Initially each pair (b}, ¢;) is initialized to (L, 0), where L denotes a null symbol that
doesn’t belong to the set of tokens. While the algorithm is processing the stream, if it sees one
of the tokens by, ..., b; then it increments the corresponding counter. Otherwise, if one of the
counters c; is equal to zero, it stores the new element as b; and sets c; to 1. Otherwise, if all
of the counters are strictly positive, it decrements each of them. When the algorithm finishes
processing the stream, it outputs the set of all tokens that have positive counters.
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1: Initialize (bj,c¢;) = (L,0) for j=1,2,... k.
2. fori=1,2,...,ndo

3 if a; = b; for some j € [k] then

4 cje—cj+1

5: else if ¢; = 0 for some j € [k] then

6 bj — a;

7 cj 1

8 else

9 Decrement c; to ¢; — 1 for each j € [k].
10: end if

11: end for

12: Output {bJ | cj > 0}.

Proposition 5.6. The output of the Misra-Gries algorithm contains every token that occurs more
thann/(k + 1) times in the data stream (and potentially some tokens that occur fewer thann/(k + 1)
times).

Proof. Picture marking elements of the sequence ay, ay,...,a, as follows. Initially all elements
are unmarked. At the start of the loop iteration that processes element a;, it becomes marked.
There are three cases for what could happen during the loop iteration. In the first two cases, if
a; €{by,....b}orifa; ¢ {by,..., by} but c; = 0 for some j, then g; remains marked. In the third
case, ifa; ¢ {b,..., b} and ¢; > O for all j, then we remove the mark from a;, and we also remove
red marks from the earliest marked copy of each of the tokens by, ..., by.

We claim that at all times, there are c; marked copies of b; for each j € [k], and no token other than
by, ..., by is marked. The proof is by induction on i. In the base case i = 0, no tokens are marked
and ¢; = 0 for all j. For the induction step, if a; belongs to the set {by, ..., b} or is inserted into
that set, then it remains marked at the end of the loop iteration and the corresponding counter
cj is incremented. If a; doesn’t belong to the set {by,..., b} and ¢; > O for all j, then the mark
is removed from ¢; and (by the induction hypothesis) there is at least one marked copy of b; for
every j € [k], so a mark is removed from one copy of each b; as c; is decremented.

Each time a loop iteration removes any marks, it removes k + 1 of them. Since an element of the
sequence is only marked once and its mark is removed at most once, there are at most n/(k + 1)
loop iterations in which marks are removed. If a token appears strictly more than n/(k + 1) times
in the sequence, then some copies of that token are marked at the end of the final loop iteration,
so that token must be one of by, ..., by. O

5.3.2 Estimating the number of distinct elements

The Misra-Gries algorithm is atypical of streaming algorithms because it’s deterministic. Gener-
ally a streaming algorithm’s objective can’t be achieved deterministically within the given space
bound, so these algorithms use randomness and are usually evaluated according to the PAC (prob-
ably approximately correct) objective: one wants to show that with probability at least 1 — ¢, the
algorithm’s output approximates the target quantity with relative error € or less.
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Here’s a famous example due to Flajolet and Martin. The algorithm estimates the number of
distinct tokens in the data stream. Note that this number might be as large as m = 2°, but we
aim to estimate the number of distinct token in space s = poly(b, log n), so keeping a list of every
distinct token encountered in the stream is not an option. Instead, we will use a hash function
h : [m] — [M], for some large integer M. For the sake of building intuition, suppose that /(j) were
an independent, uniformly distributed element of [M] for each j € [m]. Storing the description
of such a hash function would require mlog(M) bits of space, exceeding the space requirement
of our algorithm, but for now let’s just see what could be done with such a function A. Later we’ll
worry about using a hash function whose description can be stored in much less space.

The key observation is that if there are d distinct tokens in the stream, then the random variable
Z = min{h(a;) | 1 < i < n}is on the order of %. In fact, if we assume without loss of generality
that the d distinct tokens belonging to the stream are ay, ..., a,, then for any k € [M] we can
define the random variables

{1 if h(a;) < k
ik =

0 otherwise

Y = Z Xix = number of distinct tokens whose hash value is < k.
i=1

Then, we make the following observations.

3. VarlY,] = dk(M b < d—Mk. This is because

d d d2k2
Var[Y;] = E[Y;] - Z ZE[Xikak] Y
i=1 j=1
d
d2k2
= D EIXul + Z D BIXiXl -
i=1 i=1 j#i
k k2 d’k?
=d-—+dd-1 -
M ( Ve M?
k 2
kR dk(M k)
M M? M?

For future reference, we remark that we only used two properties of the random hash function £
that we used when proving the three properties above.

1. For every token a;, the hash value h(a;) is uniformly distributed in [M]. This was used to
establish that E[X;,] = 1{‘4

2. For every two distinct tokens a;,aj, the hash values h(a;) and h(a;) are independent ran-
dom variables. This was used in the calculation of Var[Y;], when we applied the identity

k 2
E[XxX;] = E[Xi] - ELX;] = (%)

45



A probability distribution over hash functions is called 2-universal if it satisfies these two prop-
erties. Below, we see how to construct randomized hash functions that satisfy both of these
properties but can be stored in exponentially less space than a purely random hash function. For
now, we proceed with the design and analysis of algorithms for approximating the number of
distinct elements in a data stream, using any 2-universal randomized hash function 4.

Recall that Z = min{h(a;) | i € [n]}. As a first attempt at estimating d, we can use the estimate
M/Z. By Markov’s Inequality, if k = | M/6d], then

Pr(%>6d)=Pr(X>2)=Pr(¥, 2 ) <EY]=%<1 (41)
On the other hand, by Chebyshev’s Inequality, if £ = [6M/d],
d
Pr(g < g) = Pr(2 < Z) = Pr(Y, = 0) < Pr(|¥, - EY/| > EY,)
< Var(Yg)
(EY,)?
By 1 M 1] @)
(EY,)? EY, dt~— 6 6M-5

Hence, the probability that the estimate M/Z lies outside the interval [d/6, 6d] is at most % + ﬁ.

We can obtain a better estimate of d using Z, the " smallest of the values {h(ap}.,, for t >
1. Intuitively, the reason is that Z, “aggregates a greater amount of randomness”, namely the
randomness in the positions of the # smallest elements rather than just the smallest one. To make
this intuition a bit more precise, if we set k = [tM/d] such that the expected number of elements
that hash into the set [k] is E[Y;] = dk/M =~ t, then the variance Var[Y;] is less than ¢, so the
probability that Y; differs from its expected value by more than &t is at most ﬁ by Chebyshev’s
Inequality. For ¢ > ﬁ, this probability will be less than ¢. This argument doesn’t directly lead to
the conclusion that tM/Z, approximates d within &, but a slight variation on the argument, using

Y,and Y, for g = |—(1TZ)dJ and r = L(lt_ﬂg)dj, does the trick.

Algorithm 3 Algorithm for estimating distinct elements

1: Set t = [2t2),

2: Choose M > m and randomly sample & : [m] — [M] from a 2-universal hash family.
3: Initialize (Z,,2,,...,7Z;) = L.

4: fori=1,...,ndo

5: Observe a; and calculate z = h(a;).

6 if z < Z, then

7 Update Z,, ..., Z to be the 7 smallest hash values yet seen, in increasing order.
8 end if

9: end for

10: Output tM/Z,.

Note that the space required by the algorithm is equal to the #log(M) plus the amount of space
required to store h. Later we will see that the space required for storing % is 2 log(M) when M
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is a prime number. Since there is always a prime number between m and 2m, we can ensure
log(M) < log(m) + 1. Also t < % + 1, so the space required by the algorithm is s = O (logm).

£26

Proposition 5.7. When Algorithm 3 is run on a stream with d distinct elements, the probability
that it outputs an answer in the range [(1 — &)d, (1 + £)d] is at least 1 — 6.

Proof. Set g = I_(lffg) -Jand r = (1’_"3 -] If the algorithm outputs an estimate greater than (1 + £)d

it means that Z; < g so Y, > t. If it outputs an estimate less than (1 — £)d it means that Z, > r so

Y, <t. We have E[Y,] = dg/M and Var[Y,] < E[Y,], so by Chebyshev’s Inequality,

dq/M < t/(1+¢)

daIM 17 = dg/M —if 43)

Pr(Y, > 1) <

Similarly,
dr/M - t/(1 —¢)

(dr/M — )2 = (dr/M — 1)*

To estimate the quantities on the right sides of inequalities (43) and (44), we use

Pr(Y, <1) < (44)

WSt
(ﬂ_t)z 82t2 _ 82t t
M “(+e? l+e l+e
ERCRE R
dr 2 &t 2_ at—l+.92
(% -1 = (= -1) = (=)
Hence,
t/(1+ 1+
Py, > < L0to 1re
(dg/M — 1) e’
t/(1 - 1-e)
Pry, > < LU= (-9

dr/M —1)? "~ (st—=1+¢&)?
To estimate the right side of the second line, we use

et>1>1-=10-e+¢)

£ 1-¢
l+e > et

(1-55) <(-%)

2
l-¢ _ 1 _ 2¢ _ l=¢
I+ — 1 1+e < (1 st )
(1-£)&’r
l+e

<(et—1+¢)?

(1-e)t 1+e
(st—1+¢)? < o

Hence, both Pr(Y, < 1) and Pr(Y, > 1) are less than or equal to % The choice of t = [%
ensures that L%f < 5. Hence, the probability that the algorithm fails to output a number in the

range [(1 — &)d, (1 + €)d] is at most g + g = 0, as desired. O

<
4
2
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5.3.3 A 2-universal hash family based on modular arithmetic

In this section we present a simple example of a 2-universal family of hash functions [m] — [M]
when M is a prime number greater than or equal to m. In that case, for any a,b € [M] define
hap(x) = ax + b (mod M). Note that one can store a description of the entire hash function A,
using 2 log(M) bits, simply by storing the coefficients a and b.

Lemma 5.8. Ifa,b € [M] are sampled independently and uniformly at random, then the distribu-
tion of the random hash function h = hy;, is 2-universal.

Proof. We need to prove that if x # y € [M], then A(x) and h(y) are uniformly distributed in [M]
and they are independent. In other words, we must prove for each pair of elements i, j € [M],

Pr(h(x) = i and h(y) = j) = 152

To do so, we recall that M is prime and x # y. Since x — y is a non-zero integer between —(M — 1)
and M—1, itis not divisible by M hence there exists some integer z such that z(x—y) = 1 (mod M).
The equations h(x) = i and h(y) = jimply i — j = h(x) — h(y) = a(x —y) (mod M), which implies
72(i—j) =az(x—y) = a (mod M). Hence,a = z(i — j) (mod M)and b =i—ax =i—z(i — j)x
(mod M) constitute the unique solution (mod M) to h(x) = i and h(y) = j. The probability that
this exact pair a, b is sampled when we draw a and b independently and uniformly at random

from [M] is # as desired. O

5.3.4 Sketching token frequencies

Data sketching is an algorithmic paradigm that combines streaming with data structures. As
before, an algorithm processes a stream of tokens, ay, . . ., a,, taking values in [m], and it is allowed
to store s = O(poly(logn,logm)) bits of information about the stream. However, rather than
wanting to estimate a single attribute of the stream, such as the number of distinct elements, the
algorithm designer’s objective is to be able to answer queries about the stream afterward. In this
setting, the s-bit internal representation of the stream is called a sketch of the data.

Consider the task of sketching the frequency of each token in the data stream. In other words,
the algorithm will be asked to answer queries of the form, “How many times did x occur in
the stream?” and the goal will be to output an approximately correct answer with probability
1 — 6. In this section we will present two different algorithms for this task. The algorithms have
different benefits and drawbacks. The first algorithm has smaller space complexity and only
suffers from one-sided error, i.e. it can overestimate the number of occurrences of x but it never
underestimates. The second algorithm requires more space and suffers from two-sided error, but
it satisfies a significantly stronger approximate-correctness property:.
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Algorithm 4 Count-Min Sketch
1: Given positive integers B, f ...
: Sample hy,...,h, : [m] — [B] independently from a 2-universal hash family.
: Initialize a two-dimensional array C of dimensions B X t, setting C[k, {] = O for each k, ¢.
: for each i € [n] do
Observe a;.
for each ¢ € [t] do
Compute k = hy(a;).
Increment C[k, {] by 1.
end for
end for
: When queried about frequency of token x, return mins;{C[h.(x), €]}.

R A >4

—_ =
- O

The first algorithm we’ll analyze, called the Count-Min Sketch, is based on a hashing scheme
presented in Algorithm 4. The idea behind the algorithm is simple: we choose ¢ independent
random hash functions 4, . . ., ;, with range [ B] for some moderately large B, and for each “hash
bucket” k € [B] we count how many elements of the stream are hashed to k by each of the ¢
functions. If & is a hash function and x is a token appearing r times in the stream, then the
counter for bucket h(x) will reach a value which is at least . To the extent that the counter
exceeds t, the difference is due to hash collisions — other elements of the stream that hash to
the same bucket as x. For large M, this will typically be only a small fraction of the stream. By
repeating this counting procedure in parallel using ¢ different hash functions, we minimize the
probability of getting an anomalously large number of hash collisions.

Lemma 5.9. The CountMin sketch uses space s = O(Btlog(mn)) and satisfies the following guar-
antee for every x € [m]: if the true frequency of x in the stream is denoted by f,, the sketch’s estimate
[ satisfies f, < f, with probability 1 and f, < f. + %" with probability at least 1 — 27".

Proof. The space complexity bound follows from the observation that the algorithm only needs
to store an array of dimensions B X ¢, with each element of the array being an integer in the range
0,1,...,n, plus descriptions of # hash functions each requiring space O(log m).

For each ¢ € [t], the counter C[h/(x),{] is incremented each time x appears in the stream —
f: times in total — and it is also incremented each time another token y # x appears in the
stream and satisfies h/(y) = hy(x). There are n — f, tokens other than x in the stream, and for
each of them the probability that 4,(y) = h.(x) is 1/B, so by linearity of expectation we have
E[C[hi(x),{] = fi] = (n — f.)/B. Then, by Markov’s Inequality,

Pr(Clhd(x), 0] - f > %) < 1.
Since the hash function {Ay, ..., h,} are mutually independent,
Pr(V¢ € [1] Clhe(0), €] - f. > 2) < (1),

and the lemma follows. O
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Corollary 5.10. Foranyeg, 6 > 0 the Count-Min Sketch with parameters B = [%'l andt = [log,(1/6)]
achieves the following guarantee: for any token x, with probability at least 1 — ¢ the estimated fre-
quency of x differs from the true frequcency by no more than en. The space complexity of the sketch
with these parameters is O (log(mn)log(1/6)/€) .

The second algorithm we’ll analyze uses more space, namely O (logn log(1/6)/ 82), but achieves
a stronger approximate-correctness guarantee: with probability at least 1 — ¢, the estimate of f,
differs from the true value by at most &l|f||,. Here, f denotes the “frequency vector” of the stream,
an m-dimensional vector whose x component f, is the frequency of token x in the stream. Since
the sum of frequencies of all tokens is n, we have f; = n. Note that f, < f; for any vector f, so the
error bound of g||f||, is never worse than the gn error bound of the Count-Min Sketch. However,
||If||> can be much smaller than n; for example, when the tokens are uniformly distributed we have

~ n

Algorithm 5 Count Sketch
1: Given positive integers B, f ...
Sample hy,...,h, : [m] — [B] independently from a 2-universal hash family.
Sample gi,...,8, : [m] — {£1} independently from a 2-universal hash family.
Initialize a two-dimensional array C of dimensions B X t, setting C[k, {] = O for each k, ¢.
for eachi € [n] do
Observe a;.
for each ¢ € [t] do
Compute k = hy(a;).
Clk, €] « Clk, €] + g/(a)).
end for
: end for

: When queried about frequency of token x, return the median of the multiset {g,(x) -
Clhe(x), €1}.

—_ R =

The intuition for the Count Sketch is similar to that for the Count-Min Sketch with one important
difference. As before, if x occurs f, times in the stream, then with each occurrence we add g,(x) to
C[h(x), ], resulting in a total of g¢(x) - f:. Since g,(x)> = 1, this means that the random variable
ge(x)- Clhe(x), €] equals f, + Z, where the random variable Z accounts for the “noise” due to other
tokens y # x that are hashed by A, to the same bucket as x, similarly to the analysis of the Count-
Min Sketch. However, the key difference is that the noise variable Z in the Count Sketch is a sum
of randomly-signed contributions from the various tokens that occupy the same hash bucket as
x. In aggregate we can expect some of these noise terms to cancel each other out because they
are oppositely signed. Hence, we might hope that the Count Sketch suffers from less additive
error when estimating the frequency f,. The following analysis substantiates that hope.

Lemma 5.11. The Count Sketch uses space s = O(Bt log(mn)) and satisfies the following guarantee
for every x € [m]: if the true frequency of x in the stream is denoted by f,, the sketch’s estimate f,

satisfies |f, — fil < \/%Hfllz with probability at least 1 — e™"/'8,
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Proof. Fix x € [m]. For any y € [m] and ¢ € [f] define random variables X,, and Z,, by

)1 i he(y) = he(x)
¢ = .
0 i he) # he(x)
Zye = 8e(X)8e(V)Xye fy-
In words, X,, equals 1 or 0 depending whether or not 4, has a hash collision between y and x,
and Z,, is a random variable representing the amount (positive or negative) that occurrences

of token y in the stream contribute to the value of g,(x) - C[h/(x), {]. To substantiate the latter
interpretation, observe that

Clhe(), €] = ) &(OXyefy
y=1

because token y occurs f, times in the stream, and each of these occurrences contribute g,(¢) to
the counter C[h(x), ] if and only if X, = 1, otherwise each occurrence of y in the stream has
zero contribution to C[h.(x), £].

The random variable Z,; is deterministically equal to f, because g/(x)> = 1 and X,, = 1. As for

Z,, when y # x, we have

E[Z,/] = Elge(x)g:Xyefy] = Elge(0)] - E[g: )] - E[Xye] - £, = O, (45)

where we have used the fact that g,(x), g/(y), and X, are mutually independent, and that E[g,(x)] =
E[g«(y)] = 0. To verify the mutual independence, observe that X, depends only on the hash func-
tion s, which is independent of g, and the values g,(x), g/(y) are independent of one another by
the pairwise-independence property of g,.

Using linearity of expectation we have
Elg/(x) - Clhe(x), €11 = Y | BlZy = fo+ ) BlZyl = fo (46)
y=1 Y#EX

To continue with the analysis of the Count Sketch, the next step is to analyze the variance of
gi(x) - Clhy(x), ] and apply Chebyshev’s Inequality. We have

Var[go(x) - Clhe(x), €1 = Varl fo + D" Zy] = Var[ ) Zy/]

yEX VEX

2

=E [Z Zy{;)
yEX

= > 3 ElZuZul = 3 EIZ41+ Y Y ElZZul.

YEX WEX Y#EX y#X we{x,y}

Now,

E[Z3] = EIX%f2] = E[X,of2] = L 12,
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since X,, = 1 with probability é and X,, = 0 otherwise. (Here we have used the fact that /4, is
drawn from a 2-universal hash family, so for any y # x the probability of 4,(y) = h(x) is 1/B.)
Furthermore, if w ¢ {x, y} then

ElZycZ,e]l = Elgc(0)geW)XyeXyie fy fiu] = Elge(W)] - ElgeW)] - E[Xye Xl - f3fi = 0,

where we have again used the mutual independence of the random variables g.(y), g/(w), and
Xy¢X,¢c. (Note that X, and X,,, may be correlated with one another, we only need to use the fact
that their product is independent of g,(y) and g,(w), which holds because X,/X,, depends only
on the hash function 4,, which is independent of g,.) Substituting the calculated values of E[Zyzl,]
and E[Z,,Z,.,] into the variance calculation, we find that

_ 1 SR P
Var[g.(x) - Clhe(x), {]] = EynEeqxf < E||f||z~
By Chebyshev’s Inequality,

Vi - Clh(x), € 1
Pe(le)- Clho.01 - £1 = () = Sl - 20 @)
B 2

We have shown that each of the individual estimates g/(x) - C[h(x), {] has probability at most %
of differing from the target value f, by more than v/3/B-||f||,. There are ¢ such estimates, one for
each ¢ € [t], and they are independent random variables. In order for their median to be less than
f<— V3/B - |[f|l> or greater than f, + V3/B - ||f||,, at least /2 of the estimates must differ from f;
by more than V3/B - ||f||,. To finish up, we use the Hoeffding Bound to show that the probability
of this happening is less than e¢™"/!8. In more detail, let W, be a random variable which equals 1
if |g(x) - Clhe(x), €] — f| = V3/B - |[f]l,, otherwise W, = 0. Inequality (47) says that E[W,] < %
Since the random variables {W, : € € [t]} are mutually independent, Hoeffding’s Inequality says
that

Pr(Wl +o+ W, é) = Pr(Wl +oo+ W, 2 E[W, +---+W,]+é) < g2 = IS,
O

Corollary 5.12. For any &,6 > 0 the Count-Min Sketch with parameters B = [b%] and t =
[181In(1/6)] achieves the following guarantee: for any token x, with probability at least 1 — 6 the es-
timated frequency of x differs from the true frequcency by no more than &||f||,. The space complexity
of the sketch with these parameters is O (log(mn) log(l/é)/sz) .
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