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These notes introduce some important and commonly used probability distributions, especially
the Gaussian distribution which is ubiquitous in statistics, data science, and all of the natural and
social sciences. We begin by brie�y reviewing some material from probability theory. In doing
so, we adopt an unorthodox approach that emphasizes random variables and the operations one
can perform on them, rather than the traditional approach of starting with sample spaces, events,
and probabilities.

1 Review of Random Variables

Our presentation of probability will focus on random variables. A random variable X taking values
in a set T can be thought of as a variable whose value de�nitely belongs to T , but the value is
undetermined until X is randomly sampled. If φ(x) is a Boolean predicate on T (i.e., a mapping
from T to {true, false}) then there is a number Pr(φ(X)) in [0, 1] called the probability of the
event φ(X).

Technically, Pr(φ(X)) is only de�ned when φ is “measurable.” We will not give the de�nition of
measurable here, but we will say that when T is a vector space and φ is any predicate that can
de�ned using continuous functions, equations, and inequalities, φ is measurable. For example, if
X is a real-valued random variable, the predicate φ(x) = (x ≥ 0) is measurable and its probability,
written as Pr(X ≥ 0), is a well-de�ned number between 0 and 1. Any Boolean predicate that
could be de�ned in an ordinary programming language is measurable. Henceforth when we use
the word “predicate” we always mean “measurable predicate.”
In addition to being well-de�ned and non-negative, probabilities must satisfy the following prop-
erties:

1. normalization: Pr(X ∈ T ) = 1.

2. �nite additivity: If φ0 and φ1 are mutually exclusive, meaning no x ∈ T satis�es φ0(x) and
φ1(x), then

Pr(φ0(X) ∨ φ1(X)) = Pr(φ0(X)) + Pr(φ1(X)).

3. monotone convergence: If φ1, φ2, . . . is a countable sequence of predicates,

Pr(∃n ∈ N φn(X)) = lim
N→∞

Pr(∃n ≤ N φn(X)).

Two random variables X and Y , taking values in T , are said to have the same distribution, or to
be identically distributed, if the equation Pr(φ(X)) = Pr(φ(Y)) holds for every predicate φ. We will
denote the relation “X and Y are identically distributed” by the notation X ∼ Y . This is an equiv-
alence relation on the set of T -valued random variables, and its equivalence classes are called
probability distributions on T . We will sometimes use calligraphic font to refer to probability dis-
tributions, and we will abuse notation and write X ∼ X when X is a random variable and X is a
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probability distribution, to denote that X is the distribution of X, i.e. that X belongs to the equiv-
alence class X. (The notation X ∈ X already expresses this relationship, since an equivalence
class is by de�nition a set. However it’s not customary to think of probability distributions as
sets, and it’s more customary to write X ∼ X when the distribution of X is X.)
If X is a random variable and G is a function, then one can construct another random variable
Y = G(X). The distribution of Y is de�ned by the property that for every predicate φ, Pr(φ(Y)) =

Pr(φ(F(X))). (Once again, there is a technicality that F must be what is called a “measurable
function”. The set of measurable functions includes any function on a vector space that can
be de�ned using continuous functions and if-then statements whose conditional is a measurable
predicate is a measurable. Any function that can be written in an ordinary programming language
is measurable. Henceforth, when we use the word “function” we implicitly mean “measurable
function.”)
For a random variable X taking values in T , we say that X is supported in a subset S ⊆ T if
Pr(X ∈ S ) = 1.

1.1 Finitely supported random variables

Given a �nite set S ⊆ T and a function p : S → [0, 1] satisfying ∑
s∈S p(s) = 1, we can construct

a T -valued random variable X such that Pr(X = s) = p(s) for all s ∈ S . Such an X is called a
�nitely-supported random variable, and its support set is the set {s ∈ S | p(s) > 0}. The distribution
of a �nitely-supported random variable is uniquely determined by its support set and by the
probabilities of each element of the support set.

1.2 Independence

Two random variables X,Y are independent if they satisfy the equation

Pr(φ(X) ∧ ψ(Y)) = Pr(φ(X)) · Pr(ψ(Y))

for every two predicates φ, ψ. More generally, a (possibly in�nite) set of random variables {Xi |

i ∈ I} is mutually independent if the following equation holds whenever φ1, . . . , φn is a �nite
sequence of predicates and i(1), . . . , i(n) is a �nite sequence of distinct indices in I:

Pr(φ1(Xi(1)) ∧ φ2(Xi(2)) ∧ · · · ∧ φn(Xi(n))) =

n∏
k=1

Pr(φk(Xi(k))).

If X and Y are two random variables, then one can always construct a pair of independent random
variables (X′,Y ′) having the same distributions as X and Y , respectively. More generally, for any
(possibly in�nite) index set I, if we are given a probability distribution Xi for each i ∈ I, then
one can construct an I-indexed family {Xi | i ∈ I} of mutually independent random variables,
such that Xi ∼ Xi for all i ∈ I.
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1.3 Real-valued random variables

If X is a random variable taking values in the real numbers, its cumulative distribution function
FX (known as the CDF, for short) is the function

FX(θ) = Pr(X ≤ θ).

It is a theorem that if twoR-valued random variables have the same CDF then they are identically
distributed.

Lemma 1.1. If X is a real-valued random variable then its CDF, FX , is a non-decreasing function
that satis�es

lim
θ→∞

FX(θ) = 1, lim
θ→−∞

FX(θ) = 0.

Proof. If θ0 < θ1 then

FX(θ1) = Pr(X ≤ θ0) + Pr(θ0 < X ≤ θ1) ≥ Pr(X ≤ θ0) = FX(θ0),

so FX is non-increasing. Since FX(θ) is bounded below by 0 and above by 1 for all θ, and FX is
non-increasing, it follows that limθ→∞ FX(θ) and limθ→−∞ FX(θ) exist. By monotone convergence,

lim
θ→∞

FX(θ) = lim
n→∞

FX(n) = Pr(∃n ∈ N X ≤ n) = 1,

since for every real number is less than some natural number. Similarly,

lim
θ→−∞

FX(θ) = 1 − lim
θ→−∞

1 − FX(θ) = 1 − lim
n→∞

1 − FX(−n) = Pr(∃n ∈ N X > −n) = 1,

since every real number is greater than −n for some n ∈ N. �

An important distribution onR is the uniform distribution on [0, 1]. This is the distribution whose
CDF is

Funif(θ) =


0 if θ ≤ 0
θ if 0 < θ < 1
1 if θ ≥ 1.

Equivalently, a random variable X supported in [0, 1] is uniformly distributed if and only if the
binary digits of X (after the decimal point) are mutually independent and each of them is 0 or 1
with equal probability.

Lemma 1.2. If X is a real-valued random variable whose CDF, FX , is continuous, then the random
variable Y = FX(X) is uniformly distributed in [0, 1].

Proof. Consider any θ ∈ (0, 1). Since FX(θ) converges to 0 and 1 as θ tends to −∞ and∞, respec-
tively, and FX is continuous, the intermediate value theorem guarantees that the set F−1({θ}) is
non-empty. Let t denote the maximum element of F−1({θ}). (It is a non-empty, closed, bounded
subset of R, so it has a maximum element.) Then, X ≤ t if and only if FX(X) ≤ θ. Hence,

Pr(Y ≤ θ) = Pr(FX(X) ≤ θ) = Pr(X ≤ t) = FX(t) = θ.

Since this equation holds for all θ ∈ (0, 1), Y is uniformly distributed. �
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Corollary 1.3. If X is a random variable whose CDF, FX , is continuous and strictly increasing, and
Y is uniformly distributed in [0, 1], then X and F−1

X (Y) are identically distributed.

Corollary 1.3 gives a useful recipe for drawing random samples from a distribution with speci�ed
CDF, F: one draws a uniformly random sample from [0, 1] and applies the function F−1.

Example 1.1. A random variable X is exponentially distributed with rate r if it satis�es

Pr(X > θ) = e−rθ.

Equivalently, X is exponentially distributed with rate r if its CDF is FX(θ) = 1 − e−rθ. Using
Corollary 1.3 we can see that one way to sample an exponentially distributed random variable
with rate r is to sample a uniformly random number Y ∈ [0, 1] and apply the transformation
X = 1

r ln( 1
1−y ).

1.4 Probability density

If V is a �nite-dimensional vector space and f : V → [0,∞) is a function satisfying
∫

V
f (x) dx = 1

then one can construct a random variable X whose distribution satis�es Pr(X ∈ S ) =
∫

S
f (x) dx

for every (measurable) subset S ⊂ V . We say that f is the probability density function of X. In
the special case when V = R, if X has probability density function f then its CDF is FX(θ) =∫ θ

−∞
f (x) dx. Conversely, if the CDF of a real-valued random variable is di�erentiable, then the

derivative of the CDF is a probability density function for that random variable.
If X and Y are independent random variables taking values in vector spaces V and W , respectively,
and X and Y have density functions f , g, respectively, then the random variable (X,Y), which takes
values in V ×W , has density function h de�ned by

h(x, y) = f (x)g(y).

1.5 Expected value

If X is a random variable taking values in [0,∞] its expected value (also known as its expectation)
is de�ned by the formula

E[X] =

∫ ∞

θ=0
Pr(X > θ) dθ =

∫ ∞

θ=0
(1 − FX(θ)) dθ.

The standard de�nition of expected value represents it as the weighted average of the possible
values of X, weighted by their respective probabilities. That de�nition turns out to be equivalent
to the formula above; the following two lemmas state and prove the equivalence, �rst for the case
when X has �nite support and then for the case when X has a probability density function.

Lemma 1.4. If X is a �nitely-support random variable with support set S ⊂ [0,∞] then E[X] =∑
s∈S s · Pr(X = s).

4



Proof. Enumerate the elements of S in increasing order as s1 ≤ s2 ≤ . . . ≤ sn and let pi = Pr(x =

si). For notational convenience let s0 = 0. Then we have

n∑
i=1

si pi =

n∑
i=1

i∑
j=1

(s j − s j−1)pi =

n∑
j=1

n∑
i= j

(s j − s j−1)pi =

n∑
j=1

(s j − s j−1) Pr(X > s j−1) (1)

In addition we have∫ ∞

0
Pr(X > θ) dθ =

n∑
j=1

∫ s j

s j−1

Pr(X > θ) dθ =

n∑
j=1

(s j − s j−1) Pr(X > s j−1). (2)

The right sides of Equations (1) and (2) are identical. The left sides are, respectively, equal to∑
s∈S s · Pr(X = s) and E[X], which completes the proof of the lemma. �

Lemma 1.5. If X is a [0,∞)-valued random variable that has a probability density function fX ,
then

E[X] =

∫ ∞

0
θ fX(θ) dθ.

Proof. The probability density satis�es fX(θ) = d
dθFX(θ). Using integration by parts we �nd that∫ ∞

0
θ fX(θ) dθ ==

∫ ∞

θ=0
(1 − FX(θ)) dθ +

(
lim
θ→∞

θ · (1 − FX(θ))
)

= E[X] + lim
θ→∞

θ · (1 − FX(θ)). (3)

The proof divides now into two cases. If the limit on the right side of Equations (3) is zero, then
we are done. Otherwise, there is some ε > 0 such that the set

Θε = {θ | θ · (1 − FX(θ) > ε}

is unbounded. In this case we claim that both the left and right sides of Equation (3) are in�nite.
De�ne an in�nite sequence of positive numbers θ1, θ2, . . . recursively, by choosing θ1 to be any
element of Θε and choosing θn+1 to be any element of Θε that exceeds 2θn. De�ne θ0 = 0 for
notational convenience. Then for any θ ∈ [θn−1, θn] we have 1 − FX(θ) ≥ 1 − FX(θn), so∫ ∞

0
(1 − FX(θ)) dθ =

∞∑
n=1

∫ θn

θn−1

(1 − FX(θ)) dθ ≥
∞∑

n=1

∫ θn

θn−1

(1 − FX(θn)) dθ

=

∞∑
n=1

(θn − θn−1)(1 − FX(θn)) >
∞∑

n=1

θn

2
(1 − Fx(θn)).

The sum on the right side is in�nite because each summand is greater than ε
2 . Hence, the right
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side of Equation (3) is in�nite, as claimed. As for the left side of (3),∫ ∞

0
θ fX(θ) dθ =

∞∑
n=1

∫ θn

θn−1

θ fX(θ) dθ ≥
∞∑

n=1

∫ θn

θn−1

θn−1 fX(θ) dθ

=

∞∑
n=1

θn−1(FX(θn) − FX(θn−1))

=

∞∑
n=1

θn−1 [(1 − FX(θn−1)) − (1 − FX(θn))]

=

∞∑
n=1

(θn − θn−1)(1 − FX(θn)) >
∞∑

n=1

θn

2
(1 − FX(θn))

Again, the sum on the last line is in�nite because each summand is at least ε/2. �

For a random variable X that takes both positive and negative values in R, de�ne X+ = max{0, X}
and X− = min{0, X}. Both X+ and −X− are non-negative random variables. If at least one of them
has �nite expectation, then E[X] is de�ned by the equation

E[X] = E[X+] − E[−X−].

If E[X+] = E[−X−] = ∞ then the expectation of X is unde�ned.
An important property of the expectation operator is linearity of expectation: for real-valued
random variables X,Y , we have

E[X + Y] = E[X] + E[Y]

whenever the terms on the left and right sides are well-de�ned. Linearity of expectation also holds
for countable sums: if X1, X2, . . . is an in�nite sequence of random variables such that either

1. ∑∞
n=1 |E[Xi]| < ∞, or

2. each variable Xn is supported on [0,∞],

then

E

 ∞∑
n=1

Xn

 =

∞∑
n=1

E[Xn].

For a random variable X taking values in Rn, one can de�ne the expectation E[X] coordinatewise.
In other words, the ith coordinate of E[X] is the expectation of the ith coordinate of X. Using
linearity of expectation for scalar-valued random variables, one can prove that the expectations
of vector-valued random variables satisfy the following version of linearity of expectation: for
any random variables X,Y taking values in Rn and any n × n matrices A and B,

E[AX + BY] = AE[X] + BE[Y].
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If X is a random variable taking values in a �nite-dimensional vector space V , its expectation is
de�ned by choosing a based vector space structure β : Rn → V , and de�ning E[X] = β(E[β−1(X)]).
Using linearity of expectation, one can verify that the vector E[X] de�ned by this equation does
not depend on the choice of based vector space structure.
We present the following lemma about expectations of products of independent random variables
without proof.

Lemma 1.6. If X,Y are independent random variables and f , g are real-valued functions, then

E[ f (X) g(Y)] = E[ f (X)]E[g(Y)].

Another useful fact about expected values is Markov’s Inequality, which bounds the probability
that a non-negative random variable exceeds its expected value by a speci�ed factor.

Lemma 1.7 (Markov’s Inequality). If X is a random variable taking values in [0,∞) and E[X] < ∞,
then for all θ > 0,

Pr(X ≥ θ) ≤
E[X]
θ

.

Proof. The function G(t) = Pr(X ≥ t) is non-negative and non-increasing in t, so

E[X] =

∫ ∞

0
Pr(X ≥ t) dt ≥

∫ θ

0
Pr(X ≥ t) dt ≥

∫ θ

0
Pr(X ≥ θ) dt = θ · Pr(X ≥ θ).

Dividing both sides by θ we obtain Markov’s Inequality. �

1.6 Variance and covariance

If X is a real-valued random variable whose expectation is well-de�ned and �nite, the variance
of X is de�ned by

Var(X) = E
[
(X − E[X])2

]
.

An important property of the variance is that when one sums up a sequence of independent
random variables, the variance of their sum equals the sum of their variances.

Lemma 1.8. If X1, X2, . . . , Xn are independent real-valued random variables, each with �nite vari-
ance, then

Var(X1 + · · · + Xn) =

n∑
i=1

Var(Xi).

Proof. We will prove the n = 2 case of the lemma, i.e. that the relation Var(X+Y) = Var(X)+Var(Y)
holds when X and Y are independent. The full lemma then follows easily by induction on n, using
X = Xn and Y = X1 + · · · + Xn−1.
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Let x̄ = E[X] and ȳ = E[Y]. Using the de�nition of variance, along with linearity of expectation,
we �nd that

Var(X + Y) = E
[
(X − x̄ + Y − ȳ)2

]
= E

[
(X − x̄)2

]
+ 2E

[
(X − x̄)(Y − ȳ)

]
+ E

[
(Y − ȳ)2

]
= Var(X) + Var(Y) + 2E

[
(X − x̄)(Y − ȳ)

]
.

Since X and Y are assumed to be independent we can apply Lemma 1.6 to conclude that

E
[
(X − x̄)(Y − ȳ)

]
= E[X − x̄] · E[Y − ȳ] = 0

which concludes the proof. �

The covariance of two real-valued random variables X and Y is de�ned by

Cov(X,Y) = E [(X − E[X])(Y − E[Y])] .

If X and Y are independent one can check, using linearity of expectation, that their covariance is
zero.
For a vector-valued random variable X taking values in Rn, the covariance matrix Cov(X) is the
n × n matrix whose (i, j) entry is Cov(Xi, X j). Equivalently, Cov(X) can be de�ned using the
formula

Cov(X) = E
[
(X − E[X]) (X − E[X])>

]
.

2 Gaussian distributions

The normal distribution on R is the probability distribution with density function f (x) = 1
Z e−

1
2 x2 ,

where the normalizing factor 1
Z is chosen to ensure that

∫ ∞
−∞

f (x) dx = 1, as required for a prob-
ability density function. The normal distribution (and its multi-dimensional generalization, the
Gaussian distribution) is the most important distribution in continuous probability theory. One
reason for its importance is the Central Limit Theorem, which says that (under mild conditions)
the distribution of the average of n identically distributed random variables converges to a normal
distribution, when suitably shifted and rescaled.

Theorem 2.1 (Central Limit Theorem). Let X1, X2, . . . be an in�nite sequence of identically dis-
tributed real-valued random variables, each with �nite expectation µ and �nite variance σ2. Then
as n→ ∞, √

n
σ

(X1 + · · · + Xn

n
− µ

)
d
−→ N (0, 1).

The relation d
−→ in the theorem statement is called “convergence in distribution.” It means that if

Fn denotes the CDF of the random variable on the left side and F denotes the CDF of the random
variable on the right side, then Fn(θ)→ F(θ) as n→ ∞, uniformly in θ. In other words, for every
ε > 0 there is some n0 < ∞ such that for all n > n0 and all θ ∈ R, |Fn(θ) − F(θ)| < ε.
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Unfortunately there is no closed-form expression for the CDF of the normal distribution. This
raises the question of how to sample normally-distributed random variables. Fortunately there
is a clever trick that allows drawing two independent normally-distributed random variables at
once. This is based on the observation that if X and Y are independent, normally-distributed
random variables, then the probability density function of the pair (X,Y) is

f (x, y) =

(
1
Z

e−
1
2 x2

) (
1
Z

e−
1
2 y2

)
=

1
Z2 e−

1
2 (x2+y2).

Now, represent the pair (X,Y) in polar coordinates as (R,Θ) where R and Θ are random variables
satisfying X = R cos(Θ), Y = R sin(Θ). We have

1
Z2

∫ ∞

−∞

∫ ∞

−∞

e−
1
2 (x2+y2)dx dy =

1
Z2

∫ 2π

0

∫ ∞

0
e−

1
2 r2

r dr dθ (4)

The extra factor of r in the integrand is attributable to the change-of-variables formula for in-
tegrals in polar coordinates, dx dy = r dr dθ. It makes a huge di�erence because re−

1
2 r2 is the

derivative of 1 − e−
1
2 r2 . Hence, we can perform the substitution u = 1

2r2 and rewrite the integral
as

1
Z2

∫ ∞

−∞

∫ ∞

−∞

e−
1
2 (x2+y2)dx dy =

1
Z2

∫ 2π

0

∫ ∞

0
e−udu dθ. (5)

This integral formula has a few consequences.

1. It’s easy to evaluate the right side and �nd that it equals 2π
Z2 . Since the left side must be equal

to 1 (integrating a random variable’s probability density over its support set always yields
1) we may conclude that Z =

√
2π. Therefore,

The normal disibutrion N (0, 1) has density f (x) = 1
√

2π
e−

1
2 x2
.

2. From the right side of Equation (5) we can deduce that R and Θ are independent random
variables, Θ is uniformly distributed in [0, 2π), and U = 1

2R2 is exponentially distributed
with rate 1. Therefore, one can use the following procedure to draw samples fromN (0, 1).

(a) Sample Θ uniformly at random from [0, 2π).

(b) Sample Z uniformly at random from [0, 1].

(c) Let U = ln( 1
1−Z ).

(d) Let R =
√

2U .

(e) Let X = R cos(Θ).

3. An exponentially distributed random variable with rate 1 has expected value 1, so 1
2E[R2] =

1. Since R2 = X2 + Y2 and X,Y are identically distributed random variables with E[X] =

E[Y] = 0, we have Var(X) = E[X2] = 1
2E[X2 + Y2] = 1

2E[R2] = 1. Therefore,

A random variable with distribution N (0, 1) has variance 1.
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If X is a random sample from N (0, 1), then the random variable Y = σX + µ has expectation µ
and variance σ2, because

E[Y] = σE[X] + µ = µ

Var[Y] = E[(Y − µ)2] = E[(σX)2] = σ2E[X2] = σ2.

The distribution of Y = σX +µ is denoted byN (µ, σ2) and is called the Gaussian distribution with
mean µ and variance σ2.

2.1 Multivariate Gaussian distributions

For vector-valued random variables taking values in Rn, the counterpart of the normal distribu-
tion is the multivariate normal distribution N (0,1), which is the distribution of a random vector
whose coordinates are independent random samples fromN (0, 1). In other words, the density of
N (0,1) is the function

f (x) =
(

1
2π

)n/2
e−

1
2 (x2

1+x2
2+···+x2

n) =
(

1
2π

)d/2
e−

1
2 〈x,x〉. (6)

If X ∼ N (0,1), then its expectation and covariance matrix are E[X] = 0 and Cov(X) = 1,
respectively.
If X ∼ N (0,1) then the distribution of X has two key properties that are evident from Equation (6).

1. The n coordinates of X are independent random variables.

2. The distribution of X is rotation-invariant. In other words, for any orthogonal matrix Q,
the random variable QX has the same distribution as X.

A surprising number of identities regarding normally distributed random variables can be derived
from these observations.

Lemma 2.2. If X1, . . . , Xn are independent random variables, each distributed according toN (0, 1),
then 1

√
n (X1+· · ·+Xn) also has the distributionN (0, 1). More generally, for any coe�cients a1, . . . , an ∈

R, not all equal to zero, the random variable Y = a1X1 + a2X2 + · · · + anXn has the distribution
N (0, a2

1 + · · · + a2
n).

Proof. Let σ =

√
a2

1 + · · · + a2
n, and observe that the vector a = 1

σ
(a1, a2, . . . , an) satis�es ‖a‖2 =

1. Hence, there exists an orthogonal matrix Q whose �rst row is a. The random vector X =

(X1, . . . , Xn) has the distribution N (0,1), so QX ∼ N (0,1) as well. The �rst coordinate of the
vector QX is Y/σ, hence Y/σ ∼ N (0, 1) and Y ∼ N (0, σ2). �

If X is a Rn-valued random variable with distribution N (0,1), B is an invertible n × n matrix,
and µ is any vector in Rn, then the distribution of Y = BX + µ is called a multivariate Gaussian
distribution. The expectation of Y is µ and its covariance is

Cov(Y) = E
[
(Y − µ)(Y − µ)>

]
= E

[
(BX)(BX)>

]
= BE[XX>]B> = B B>,
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since E[XX>] = Cov(X) = 1. The distribution of Y is denoted by N (µ, BB>). The density of Y
can be calculated as follows. Let T denote the function T (x) = Bx + µ. Its inverse is the function
T−1(y) = B−1(y − µ). A small ball B of volume ε > 0 centered at y is mapped by T−1 to a small
ellipsoid E of volume | det(B−1)| · ε centered at x = T−1(y). We have

Pr(Y ∈ B) = Pr(X ∈ E) =

[
| det(B−1)|

(
1

2π

)n/2
e−

1
2 〈x,x〉 + o(1)

]
· ε,

where o(1) denotes an error term that converges to zero as ε → 0. Thus, the density of Y at y is
| det(B−1)|

(
1

2π

)n/2
e−

1
2 〈x,x〉. Now, recalling that x = T−1(y) = B−1(y − µ), we have

〈x, x〉 =
〈
B−1(y − µ), B−1(y − µ)

〉
=

〈
y − µ, (B−1)>B−1(y − µ)

〉
=

〈
y − µ, (BB>)−1(y − µ)

〉
.

The right side depends only on BB>, not on B. Thus, if two multivariate Gaussian random vari-
ables have the same mean µ and the same covariance matrix Σ = BB>, then they are identically
distributed and their density is

f (y) = det(Σ)−1/2
(

1
2π

)n/2

e−
1
2〈y−µ,Σ

−1(y−µ)〉.

Lemma 2.3. If A is a d × n matrix of rank d and X ∼ N (0,1) is a Rn-valued multivariate nor-
mal random variable, then Y = AX is a Rd-valued Gaussian random variable with distribution
N (0, AA>).

Proof. Using the singular value decomposition, write A as A = US V> where S is a d × n matrix
whose diagonal entries, S ii, are equal to the singular values of A and whose o�-diagonal entries,
S i j (i , j), are all equal to zero. We can factor S as S = D [1 0] ,where D is a d×d diagonal matrix
with the singular values of A on the diagonal, and [1 0] is a d × n matrix formed by juxtaposing
the d × d identity matrix with a d × (n − d) block of zeros. Then

Y = UD [1 0] V>X.

Let W = [1 0] V>X. Since the distribution of X is rotation-invariant and V> is a rotation matrix,
the distribution of W is the same as the distribution of [1 0] X, i.e. the �rst d coordinates of X.
In other words, W ∼ N (0,1), where 1 now refers to the d × d identity matrix rather than n × n
identity. The matrix B = UD is invertible, and we have derived above that when W ∼ N (0,1)
and Y = BW for an invertible matrix B, then Y ∼ N (0, BB>). To �nish up, note that

BB> = UD2U> = US S >U> = AA>,

so Y ∼ N (0, AA>) as claimed. �

We remark that Lemma 2.2 corresponds to the special case of Lemma 2.3 where A has only one
row.
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3 The Cherno� and Hoe�ding Bounds

When one averages n independent random variables, each with bounded mean and variance,
the average is unlikely to di�er from its expected value by much more than 1

√
n . In Section 2

we encountered one important theorem that gives a precise and quantitative interpretation to
this intuition, namely the Central Limit Theorem. However, the Central Limit Theorem is an
asymptotic statement that holds as n→ ∞. In the analysis of randomized algorithms, and in the
average-case analysis of algorithms applied to random datasets, it is often important to make use
of non-asymptotic theorems that bound the probability that an average of n independent random
variables will be far from its expected value, for �xed n rather than n→ ∞. This section presents
two such theorems, the Cherno� and Hoe�ding Bounds, along with a few applications.

3.1 The cumulant generating function of a random variable

For a real-valued random variable X, the cumulant generating function KX(t) is de�ned by the
formula

KX(t) = ln
(
E

[
etX

])
.

The importance of this function lies in the fact that it behaves additively with respect to summa-
tion of independent random variables.

Lemma 3.1. If X,Y are independent real-valued random variables then

KX+Y(t) = KX(t) + KY(t)

for all t.

Proof. We have

KX+Y(t) = ln
(
E

[
et(X+Y)

])
= ln

(
E

[
etXetY

])
= ln

(
E

[
etX

]
E

[
etY

])
= ln

(
E

[
etX

])
+ ln

(
E

[
etY

])
,

where the equation E
[
etXetY

]
= E

[
etX

]
E

[
etY

]
follows from the independence of X and Y . �

Another useful property of the cumulant generating function is its behavior under scaling.

Lemma 3.2. For any real-valued random variable X and any λ, t ∈ R,

KλX(t) = KX(λt).

Proof.
KλX(t) = ln

(
E

[
etλX

])
= KX(λt).

�

12



When one expands the cumulant generating function KX as a power series in t near t = 0, the
coe�cients of the power series recover many useful parameters of the distribution of X.

KX(t) = ln
(
E

[
1 + tX +

1
2

t2X2 +
1
6

t3X3 + · · ·

])
= ln

(
1 + E[X]t +

1
2
E[X2]t2 +

1
6
E[X3]t3 + · · ·

)
=

∞∑
k=1

(−1)k+1

k

(
E[X]t +

1
2
E[X2]t2 +

1
6
E[X3]t3 + · · ·

)k

=

(
E[X]t +

1
2
E[X2]t2 +

1
6
E[X3]t3 + · · ·

)
−

(
1
2
E[X]2t2 +

1
2
E[X]E[X2]t3 + · · ·

)
+

(
1
3
E[X]3t3 + · · ·

)
+ O(t4)

= E[X]t +
1
2

(
E[X2] − E[X]2

)
t2 +

1
6

(
E[X3] − 3E[X]E[X2] + 2E[X]3

)
+ O(t4).

The expectation and variance of X occur as the coe�cients of t and 1
2 t2, respectively. The coe�-

cient of 1
n! t

n is called the nth cumulant of X and is denoted by κn(X). The identity κn(X + Y) =

κn(X) + κn(Y), valid for all n ∈ N and all independent random variables X,Y , follows from
Lemma 3.1. This generalizes the familiar facts that expectation and variance behave additively
when applied to sums of independent random variables.
The cumulant generating function forms the centerpiece of one proof of the Central Limit The-
orem. To begin with, let us calculate the cumulant generating function of X when X ∼ N (0, 1).

E
[
etX

]
=

1
√

2π

∫ ∞

−∞

etxe−
1
2 x2

dx =
1
√

2π

∫ ∞

−∞

e−
1
2 (x2−2tx) dx =

1
√

2π
e

1
2 t2

∫ ∞

−∞

e−
1
2 (x−t)2

dx = e
1
2 t2

KX(t) = ln
(
E

[
etX

])
=

1
2

t2

Now consider an in�nite sequence of independent, identically distributed random variables Y1,Y2, . . .
with E[Yi] = 0 and Var(Yi) = 1 for all i. Denote the cumulant generating function of each Yi by
KY(t). Since E[Yi] = 0 and Var(Yi) = 1, we have KY(t) = 1

2 t2 + O(t3). The Central Limit Theorem
is equivalent to the assertion that Zn = 1

√
n (Y1 + · · · Yn)

d
−→ N (0, 1) as n→ ∞. Using Lemmas 3.1

and 3.2, we have

KZn(t) = KY1+···+Yn

(
t
√

n

)
= nKY

(
t
√

n

)
= n

1
2

(
t
√

n

)2

+ O
(

t
√

n

)3

)
 =

1
2

t2 + O
(

t3

√
n

)
,

so KZn(t) →
1
2 t2 as n → ∞. Recall that 1

2 t2 is the cumulant generating function of the distribu-
tion N (0, 1). The remainder of the proof needs to show that the convergence of the cumulant
generating function of Zn to that of N (0, 1) implies the convergence of the distribution of Zn to
N (0, 1). This is the more di�cult part of the proof, and we will omit discussion of it here.
The cumulant generating function furnishes a useful way to bound the probability of a random
variable deviating signi�cantly from its expected value.
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Lemma 3.3. Let X be a random variable with cumulant generating function KX(t), and suppose
λ > 0. For any t > 0,

Pr(X ≥ E[X] + λ) ≤ eKX(t)−t(E[X]+λ)

Pr(X ≤ E[X] − λ) ≤ eKX(−t)+t(E[X]−λ).

Proof. To derive the bound on Pr(X ≥ E[X]+λ), observe that the inequality X ≥ E[X]+λ holds if
and only if etX ≥ et(E[X]+λ) and apply Markov’s inequality. To derive the bound on Pr(X ≤ E[X]−λ),
observe that the inequality X ≤ E[X] − λ holds if and only if e−tX ≥ e−t(E[X]−λ) and again apply
Markov’s inequality. �

3.2 The Cherno� Bound

Let X1, X2, . . . , Xn be independent (not necessarily identically distributed) random variables taking
values in [0, 1]. In this section we derive the Cherno� bound, which bounds the probability that
X1 + · · · + Xn di�ers from its expectation by a factor lying outside the interval [1 − ε, 1 + ε]. We
will assume throughout this section that 0 < ε < 1.

Lemma 3.4. For any random variable X taking values in [0, 1], the cumulant generating function
KX satis�es

KX(t) ≤ (et − 1)E[X]

for all t ∈ R.

Proof. For all x ∈ [0, 1] and all t ∈ R the inequality

etx ≤ 1 + (et − 1)x

holds because the left side is a convex function of x, the right side is a linear function of x, and
the left and right sides are equal at the endpoints x = 0 and x = 1. Applying this inequality along
with linearity of expectation, we �nd that

E
[
etX

]
≤ 1 + (et − 1)E[X].

The lemma follows upon taking the natural logarithm of both sides and using the inequality
ln(1 + z) ≤ z, which is valid for all z > 0. �

Theorem 3.5 (Cherno� bound). If X1, X2, . . . , Xn are independent random variables taking values
in [0, 1] and X = X1 + · · · + Xn, then

Pr(X ≥ (1 + ε)E[X]) < e−
1
3 ε

2E[X]

Pr(X ≤ (1 − ε)E[X]) < e−
1
2 ε

2E[X]

Proof. Using Lemmas 3.1 and 3.4, together with E[X] =
∑n

i=1 E[Xi], we �nd that KX(t) ≤ (et −

1)E[X] for all t ∈ R. Now, from Lemma 3.3 we have

Pr(X ≥ (1 + ε)E[X]) < e(et−1−(1+ε)t)E[X]

14



for all t ≥ 0. To minimize the right side, set t = ln(1+ε). Then et−1−(1+ε)t = ε−(1+ε) ln(1+ε).
Using the Taylor series

(1 + ε) ln(1 + ε) = (1 + ε)
(
ε − 1

2ε
2 + 1

3ε
3 − · · ·

)
= ε + 1

2ε
2 − 1

6ε
3 + · · · > ε + 1

3ε
2

we �nd that ε − (1 + ε) ln(1 + ε) < −1
3ε

2 and the upper bound on Pr(X ≥ (1 + ε)E[X]) follows.
For t ≥ 0 another application of Lemma 3.3 yields

Pr(X ≤ (1 − ε)E[X]) < e(e−t−1+(1−ε)t)E[X].

To minimize the right side we set t = − ln(1−ε) and then e−t −1 + (1−ε)t = −ε− (1−ε) ln(1−ε).
Using the Taylor series

−(1 − ε) ln(1 − ε) = (1 − ε)(ε + 1
2ε

2 + 1
3eps3 + · · · ) = ε − 1

2ε
2 − 1

6ε
3 − · · · < ε − 1

2ε
2

we �nd that −ε− (1−ε) ln(1−ε) < −1
2ε

2 and the upper bound on Pr(X ≤ (1+ε)E[X]) follows. �

A few features of the Cherno� bound are worth noting.

1. Theorem 3.5 bounds the probability of X deviating from E[X] by a large amount. Inequali-
ties of this type are called large deviation inequalities or tail bounds, since they quantify the
amount of probability in the “tail” of the distribution of X.

2. The probability of a large deviation tends to zero exponentially fast as E[X] grows large.
Inequalities of this type are called exponential tail bounds.

3. The Cherno� bound concerns that probability that the ratio X/E[X] is far from 1, i.e. it
pertains to multiplicative deviations of X from its expected value. In Section 3.3 we present
an exponential tail bound for additive deviations, i.e. a bound on the probability that |X −
E[X]| is far from zero.

4. The probability of large deviation is exponentially small as a function of E[X], not as a
function of n. Even if n is very large, it’s possible that the distribution of X is not very
concentrated around its expected value. For example, if X1, . . . , Xn−1 are deterministically
equal to 0, and Xn is equal to 0 or 1, each with probability 1

2 , then X is equal to 0 or 1, each
with probability 1

2 , so the event that X is between (1−ε)E[X] and (1+ε)E[X] has probability
zero! This is consistent with the Cherno� bound, which only says that Pr(X ≥ (1 + ε)E[X])
is small when E[X] is large.

5. In the exponential function on the right side of the Cherno� bound, the dependence on
ε is quadratic. This is typical of exponential tail bounds. In order for a deviation such as
X ≥ (1 + ε)E[X] to be unlikely, the expected value of X must be greater than 1/ε2 times
the maximum value of any individual Xi. A useful way of summarizing this observation is,
“To estimate the frequency of an event within a factor of 1 ± ε, you must wait until you have
observed the event at least 1/ε2 times.”

15



3.3 The Hoe�ding Bound

In this section we derive a di�erent exponential tail bound in which we once again have inde-
pendent random variables X1, . . . , Xn, each taking values in a bounded interval, and their sum is
denoted by X. This time, rather than proving that the ratio X/E[X] is unlikely to be far from 1,
we wish to prove that the absolute di�erence |X − E[X]| is unlikely to be far from 0. In other
words, whereas the Cherno� bound provides conditions under which E[X] is likely to be a good
multiplicative approximation to X, we wish to understand conditions under which E[X] is likely
to be a good additive approximation to X. The Hoe�ding bound answers this question.
As before, the exponential tail bound will be proven using an application of Lemma 3.3, and
the key ingredient will be a lemma that furnishes an upper bound on the cumulant generating
function of a random variable.

Lemma 3.6 (Hoe�ding’s Lemma). If X is a random variable supported on an interval [a, b], with
expected value µ, then the cumulant generating function KX(t) satis�es

KX(t) − µt ≤
(b − a)2t2

8
.

Proof. The left side is the cumulant generating function of the random variable X − µ, which has
expected value zero, so we may replace X with X−µ if necessary and assume henceforth, without
loss of generality, that E[X] = 0. The lemma then asserts the inequality KX(t) ≤ 1

8 (b − a)2t2. To
prove this inequality, we will use Taylor’s Theorem. We know KX(0) = 0 from the de�nition of
the cumulant generating function, and we know K′X(0) = 0 since the derivative of KX at 0 is the
expectation of X. Hence, KX(t) = 1

2 K′′X (u)t2 for some u.
To conclude the proof, we need to prove that K′′X (u) ≤ 1

4 (b − a)2 for all u, when X is a random
variable supported on [a, b]. We will prove this bound by constructing a new random variable Y
supported on [a, b] whose cumulant generating function KY(t) satis�es

KY(t) = KX(u + t) − KX(u)

for all t. Then, taking the second derivative of both sides with respect to t, we will obtain K′′Y (0) =

K′′X (u). Recalling that K′′Y (0) is equal to the variance of Y , we will be left with showing that the
variance of any random variable supported on [a, b] is less than or equal to 1

4 (b− a)2. It will turn
out that this inequality is quite easy to prove.
Let Y be a random variable obtained from X by “reweighting the probability of each support point
z by the factor euz.” If X has probability density function fX(z) this means that Y has probability
density function fY(z) = 1

Z euz fX(z), where the normalization factor Z =
∫ ∞
−∞

euz fX(z) is chosen so
that the equation

∫ ∞
−∞

fY(z) dz = 1 holds, as required for a probability density function. More gen-
erally, i.e. whether or not X has a probability density function, the distribution of Y is the unique
distribution satisfying the property that for every function g, E[g(Y)] = E[euXg(X)]/E[euX]. Using
the function g(z) = etz,we �nd that E[etY] = E[e(u+t)X]/E[euX]. Taking the logarithm of both sides,
we obtain KY(t) = KX(u + t) − KX(u), as desired.
As observed earlier, to conclude the proof of the lemma we need only show that a random variable
Y supported on the interval [a, b] has variance at most 1

4 (b − a)2. The validity of the inequality
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Var(Y) ≤ 1
4 (b− a)2 is una�ected if we apply an a�ne transformation to Y and we apply the same

a�ne transformation to the interval [a, b]. In other words, if we replace Y with cY + d and we
replace [a, b] with [ca+d, cb+d], the validity of the inequality is una�ected because the variance
of Y is scaled by c2, and the squared-length of the interval is also scaled by c2. Hence, without loss
of generality (applying an a�ne transformation to Y and to [a, b] if necessary) we can assume
[a, b] = [−1, 1] and 1

4 (b − a)2 = 1. The variance of Y is E[Y2] − E[Y]2. The �rst term on the right
side is clearly no greater than 1 because Y is supported on [−1, 1]. Since E[Y]2 ≥ 0, it follows
that E[Y2] − E[Y]2 ≤ 1, as desired. �

Theorem 3.7. (Hoe�ding’s Inequality) Suppose X1, X2, . . . , Xn are independent random variables
and that for each i, the support of Xi is contained in a bounded interval [ai, bi]. Let X = X1 + · · ·+ Xn.
For any λ > 0,

Pr(X ≥ E[X] + λ) ≤ exp
(
−

2λ2∑n
i=1(bi − ai)2

)
Pr(X ≤ E[X] − λ) ≤ exp

(
−

2λ2∑n
i=1(bi − ai)2

)
.

Proof. Let µi = E[Xi] for each i, and let µ =
∑n

i=1 µi = E[X]. By Hoe�ding’s Lemma, KXi(t) − µit ≤
1
8 (bi − ai)2t2 for all t and all i. Summing over i,

KX(t) − µt ≤
1
8

n∑
i=1

(bi − ai)2t2.

Let c = 1
8

∑n
i=1(bi − ai)2. By Lemma 3.3,

Pr(X ≥ E[X] + λ) ≤ eKX(t)−µt−λt ≤ ect2−λt.

The proof concludes by setting t = λ/(2c), so that ct2 − λt = −λ
2

4c = − 2λ2∑n
i=1(bi−ai)2 . �

3.4 Applications of the Cherno� and Hoe�ding bounds

The Cherno� and Hoe�ding bounds are some of the most versatile tools in the analysis of ran-
domized algorithms and the average-case analysis of algorithms. In this section we will present
a number of applications of both.

3.4.1 Estimating the expected value of a distribution

Suppose Y is a random variable taking values in an interval [0,M] whose expected value we wish
to estimate. Let Y1,Y2, . . . be a sequence of independent random variables, each having the same
distribution as Y . One way to estimate E[Y] is to simply take the unweighted average of the �rst
N samples,

Ŷ =
1
N

(Y1 + · · · + YN).
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We wish to determine a value of N such that the error of the estimate is very unlikely to exceed
ε:

Pr(|Ŷ − E[Y]| > ε) < δ.

This type of guarantee is summarized by saying that the estimator Ŷ is “probability approximately
correct,” often abbreviated as PAC.
By Hoe�ding’s Inequality,

Pr(|Ŷ − E[Y]| > ε) = Pr(|Y1 + . . . + YN − NE[Y]| > Nε) ≤ 2 exp
(
−

2N2ε2

NM2

)
= 2 exp

(
−

2Nε2

M2

)
.

To make this less than δ, we require

exp
(
−

2Nε2

M2

)
<
δ

2

exp
(
2Nε2

M2

)
>

2
δ

2Nε2

M2 > ln
(
2
δ

)
N >

M2

2ε2 ln
(
2
δ

)
.

This sample complexity bound has several features that are typical for estimation procedures
that use independent, identically distributed samples to estimate a scalar quantity. The number
of samples required depends inverse-quadratically on the tolerable level of “relative error;” in this
example the tolerable relative error is ε/M because we are trying to estimate a quantity belonging
to an interval of length M, and we tolerate additive error up to ε. On the other hand, the number
of samples depends on logarithmically on the inverse of the “con�dence parameter,” δ, which
governs the maximum failure probability that is deemed tolerable.

3.4.2 Generalization error of empirical risk minimization

We now show how the Hoe�ding bound can be applied to the important problem of generalization
error in machine learning. To keep the analysis as simple as possible, we will focus on the task of
hypothesis selection, where there is a �nite set of hypotheses and the learner aims to use a set of
training data to choose a hypothesis that generalizes to unseen data.
We can model the hypothesis selection problem as follows. We have:

• a random variable Z taking values in a setZ;

• a �nite set of hypotheses,H = {h1, . . . , hm};

• independent random variables Z1,Z2, . . . ,ZN , each identically distributed to Z, collectively
called the training set.
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• a loss function L : H ×T → [0, 1]. The value L(h, z) indicates how poorly hypothesis h �ts
data point z.

We assume that the learner is given the training set {Z1, . . . ,ZN} but does not know the distribu-
tion from which the Zi’s were sampled. There are two important ways of evaluating a hypothesis
h.

1. The population loss is L(h) = E[L(h,Z)]. This measures how well hypothesis h performs on
the actual distribution from which the data is sampled, including data points that were not
present in the training data.

2. The empirical loss is 1
N

∑N
i=1 L(h,Zi). This has the advantage that it can be computed from

the training data, unlike the population loss which can only be computed if one knows the
data distribution.

Empirical risk minimization is the algorithm that selects the hypothesis hERM that minimizes em-
pirical loss on the training set. The hope is that if the training set is a representative sample of
the data distribution, then hERM will also perform near-optimally when evaluated according to
population loss, even though it was selected to minimize empirical loss rather than population
loss.

Theorem 3.8. Let h∗ denote the element ofH that minimizes population loss. For any 0 < ε, δ < 1,
if the number of data samples, N, satis�es N > 2

ε2 ln(2m/δ) then with probability at least 1 − δ,
L(hERM) ≤ ε + L(h∗).

Proof. Let φ(Z1, . . . ,ZN) denote the Boolean predicate:

∀h ∈ H

∣∣∣∣∣∣∣L(h) −
1
N

∑
i=1

L(h,Zi)

∣∣∣∣∣∣∣ < ε

2
.

When Z1, . . . ,Zn satisfy property φ, it implies that L(hERM) ≤ ε + L(h∗) because

L(hERM) ≤
ε

2
+

1
N

∑
i=1

L(hERM,Zi) ≤
ε

2
+

1
N

∑
i=1

L(h∗,Zi) ≤ ε + L(h∗).

The �rst and third inequalities are applications of property φ, the second inequality follows from
the de�nition of hERM .
To complete the proof we just need to show that Pr(φ(Z1, . . . ,Zn)) ≥ 1 − δ. For j = 1, 2, . . . ,m
let ψ j(Z1, . . . ,Zn) denote the predicate

∣∣∣L(h) − 1
N

∑N
i=1 L(h j,Zi)

∣∣∣ ≥ ε
2 . The random variables Xi =

1
N L(h j,Zi) take values in [0, 1

N ] and the expectation of their sum is L(h), so applying Hoe�ding’s
inequality with λ = ε/2 yields

Pr(ψ j(Z1, . . . ,Zn)) ≤ 2 exp
(
−
ε2N

2

)
≤
δ

m
,

by our assumption that N > 2
ε2 ln(2m/δ). The Union Bound (Lemma 3.9 below) implies that

Pr(∨m
j=1ψ j(Z1, . . . ,Zn)) ≤

∑m
j=1 Pr(ψ j(Z1, . . . ,Zn)) ≤ δ. Since ∨m

j=1ψ j(Z1, . . . ,Zn) is the negation of
φ(Z1, . . . ,Zn), it follows that Pr(φ(Z1, . . . ,Zn)) ≥ 1 − δ as claimed. �
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In the proof we used the following simple fact about the probability of a disjunction of �nitely
many predicates, called the Union Bound.

Lemma 3.9 (Union Bound). If X is a random variable and ψ1(X), . . . , ψm(X) are Boolean predicates,
then

Pr
(
∨m

j=1ψ j(X)
)
≤

m∑
j=1

Pr(ψ j(X)).

Proof. Our plan is to use the property that probabilities are �nitely additive. However, we can’t
use �nite additivity directly because the predicates ψ1, . . . , ψm are not (necessarily) mutually ex-
clusive. To work this obstacle, we construct mutually exclusive predicates φ1, φ2, . . . , φm as fol-
lows:

φ j(X) = ψ j(X) ∧ ¬
(
∨

j−1
k=1ψk(X)

)
.

By induction on j, the relation
∨

j
k=1 φk(X) = ∨

j
k=1ψk(X) (7)

holds. Consequently, for all j > i we have

φ j(X)⇒ ¬
(
∨

j−1
k=1ψk(X)

)
⇒ ¬

(
∨

j−1
k=1φk(X)

)
⇒ ¬φi(X)

which shows that φ1(X), . . . , φm(X) are mutually exclusive and justi�es

Pr
(
∧m

j=1φ j(X)
)

=

m∑
j=1

Pr(φ j(X)). (8)

If υ j(X) = ψ j(X) ∧ φ j(X) then φ j(X) and υ j(X) are mutually exclusive and ψ j(X) = φ j(X) ∨ υ j(X)
so

Pr(ψ j(X)) = Pr(φ j(X)) + Pr(υ j(X)) ≥ Pr(φ j(X)). (9)

Applying Equation (7) with j = m, and using Equations (??), we obtain

Pr
(
∨m

j=1ψ j(X)
)

= Pr
(
∨m

j=1φ j(X)
)

=

m∑
j=1

φ j(X) ≤
m∑

j=1

ψ j(X),

which completes the proof of the Union Bound. �

3.5 Reducing error rate of randomized algorithms

Our last application of the Cherno� bound comes from the theory of randomized algorithms
for decision problems. A decision problem is a problem whose output is an element of {0, 1},
with 0 representing “no” and 1 representing “yes.” A decision problem belongs to the complexity
class P if there is a deterministic polynomial-time algorithm — i.e., an algorithm running in time
O(nc) where n is the input size (in bits) and c is a constant — that answers the decision problem
correctly on every possible input. The complexity class BPP consists of decision problems Π
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having a randomized polynomial-time algorithm A that satis�es the following guarantee, where
x denotes the problem input and r denotes the random string used by A.

∀x Pr(A(x, r) , Π(x)) ≤
1
3
. (10)

The random string r is assumed to be a uniformly random binary string whose length, L(n), is
bounded by a polnomial function of the input size, n. Property (10) is often stated equivalently
as follows: if Π(x) = 1 then Pr(A(x, r) = 1) ≥ 2

3 , while if Π(x) = 0 then Pr(A(x, r) = 1) ≤ 1
3 .

The error rate of a BPP algorithm can be reduced by running it repeatedly using independent
random strings, and taking a majority vote of the outcomes. The following algorithm uses a
random string R = r1 : r2 : r3 : · · · : rm of length m · L(n), for some speci�ed m ∈ N.

Algorithm 1 Algorithm Bm(x,R)
1: Let n denote the number of bits in x.
2: Break R into strings r1, r2, . . . , rm, each of length L(n).
3: Let a = 1

m

∑m
i=1 A(x, ri).

4: If a ≥ 1
2 , output 1. Else, output 0.

Lemma 3.10. If randomized algorithm A(x, r) satis�es Pr(A(x, r) , Π(x)) ≤ 1
3 for all x, then for

any δ > 0, randomized algorithm Bm(x,R) with m > 18 ln(1/δ) satis�es Pr(Bm(x,R) , Π(x)) ≤ δ
for all x.

Proof. Since algorithm A satis�es the BPP property (10), when Π(x) = 1 we have E[A(x, ri)] ≥ 2
3

and when Π(x) = 0 we have E[A(x, ri)] ≤ 1
3 . If Bm(x,R) , Π(x) then either Π(x) = 0 and∑m

i=1 A(x, ri) ≥ m
2 , or Π(x) = 1 and ∑m

i=1 A(x, ri) < m
2 . In the former case, ∑m

i=1 A(x, ri) exceeds
its expected value by at least m

6 , while in the latter case it falls short of its expected value by at
least the same amount. In both cases, Hoe�ding’s Inequality ensures that the probability of this
occurring is no greater than

e−2(m/6)2/m = e−m/18 = eln(δ) = δ.

�

Lemma 3.10 has the following consequence for complexity theory. A decision problem Π is said to
belong to the complexity class P/poly if there is a family of deterministic algorithms {Bn | n ∈ N}
such that:

1. for every input x of size n, Bn(x) = Π(x);

2. for some constant c < ∞ and every n ∈ N, the worst-case running time of Bn on inputs of
size n is bounded by O(nc).

This is summarized by saying that the decision problem Π has a non-uniform family of polynomial-
time algorithms: it can be solved deterministically in polynomial time for all input sizes, but the
choice of algorithm depends on the input size.
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Theorem 3.11. If Π is a decision problem in BPP then Π belongs to P/poly.

Proof. Let A be a randomized polynomial-time algorithm for Π that satis�es property (10). For
any n ∈ N let m = d18 ln(2) · ne = d18 ln (2−n)e and consider the randomized algorithm Bm.
According to Lemma 3.10, for all x ∈ {0, 1}n, Pr(Bm(x,R) , Π(x)) < 2−n. By the union bound,
Pr(∃x ∈ {0, 1}n Bm(x,R) , Π(x)) < 1. Hence, it is not the case that for all R ∈ {0, 1}m·L(n), there
exists an x ∈ {0, 1}n such that Bm(x,R) , Π(x). In other words, there exists some Rn ∈ {0, 1}m·L(n)

such that for all x ∈ {0, 1}n, Bm(x,Rn) = Π(x). Let Bn be the algorithm that on input x, computes
Bm(x,Rn). Then the family {Bn | n ∈ N} constitutes a non-uniform family of polynomial-time
algorithms for Π. �

A very natural and worthy goal is to eliminate the non-uniformity in Theorem 3.11 and prove that
BPP = P. This would show that giving algorithms access to random bits does not a�ect the set of
decision problems that can be solved in polynomial time, or equivalently, that every polynomial-
time randomized algorithm for a decision problem can be e�ciently “derandomized” to yield a
deterministic polynomial-time algorithm for the same problem. Most complexity theorists believe
such a derandomization of BPP is possible. The e�ort to derandomize BPP and other complexity
classes is currently one of the most active research areas in complexity theory.

4 Tail bounds for matrices

A recurring theme in the analysis of algorithms is that one is applying an algorithm to n random
samples from a data distribution, and one wants to ensure that, with high probability, the output
is the same (or similar) to what we would obtain if we could run the algorithm on the entire
distribution. We already saw one example of this theme in Section 3.4.2, where the algorithm in
question was simply picking out the hypothesis with the least average loss on a data set, from
among a �nite set of hypotheses. In this section we will analyze a more complicated example
— using the top singular vector of a set of data samples to estimate the top singular vector of
a covariance matrix — that requires using the exponential tail bounds for random scalars from
Section 3 to derive an exponential tail bound for random matrices.
It takes quite a few steps to reach the main result in this section, so we begin by presenting a road
map.

1. In Lemma 4.1 we construct a �nite set of vectors on the (Euclidean) unit sphere in Rd, such
that every other vector on the sphere is close to at least one element of the set.

2. We use this �nite set of vectors in Lemma 4.2 to prove an “enhanced union bound” that
non-trivially bounds the probability of the union of in�nitely many events, when each
event refers to a particular inner product deviating signi�cantly from its expected value.

3. In ?? we apply the enhanced union bound to derive an exponential tail bound for sums of
random matrices, asserting that with high probability, when the random sum is multiplied
by any unit vector, the product is close to its expected value.
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4. If Section 4.1 we apply the matrix tail bound to analyze the distribution of the top singular
vector of a set of random samples from a distribution.

Lemma 4.1. Let Sd−1 denote the unit sphere in Rd, i.e. the set of all x such that ‖x‖2 = 1. For every
positive integer d and every 0 < γ < 1

2 there is a set C(d, γ) ⊂ Sd−1 with at most (2e/γ)d elements,
such that for all x ∈ Sd−1 there exists w ∈ C(d, γ) with 〈w, x〉 > 1 − γ. Also, for all x ∈ Sd−1, the
vector (1 − γ)x is a convex combination of elements of C(d, γ).

Proof. Let k = d d
2γe. For every d-tuple of non-negative integers I = (i1, i2, . . . , id) such that i1 +

· · · + id = k, and every d-tuple of signs S = (s1, . . . , sd) ∈ {±1}d, let

wI,S = k−1/2


s1
√

i1

s2
√

i2
...

sd
√

id

 .
Let C(d, γ) denote the set of all such vectors wI,S . By construction, the squared 2-norm of any such
vector is k−1 ∑d

j=1 s2
j i j = k−1(i1 + · · · + id) = 1, so C(d, γ) ⊂ Sd−1. For any x = (x1, . . . , xd) ∈ Sd−1,

de�ne d-tuples I = (i1, . . . , id) and S = (s1, . . . , sd) by letting s j be the sign of x j, letting i j =
⌊
kx2

j

⌋
for j < d, and letting id = k − (i1 + · · · + id−1). We aim to prove that 〈

wI,S , x
〉
> 1 − γ. By

construction, for all j, i j > kx2
j − 1, hence

〈
wI,S , x

〉
= k−1/2

d∑
j=1

s j
√

i jx j =

d∑
j=1

√
i j

k
|x j| >

d∑
j=1

(
max{x2

j −
1
k
, 0}

)1/2

|x j|.

Using the identity (
|x j| −

1
|x j|k

)2

=

(
x2

j −
1
k

) 1 − 1
x2

jk

 ,
we see that the right side is less than or equal to x2

j −
1
k when x2

j −
1
k ≥ 0, hence(

max{x2
j −

1
k
, 0

)1/2

≥ max{|x j| −
1
|x j|k

, 0}.

Let J denote the set of indices j ∈ {1, 2, . . . , d} such that x2
j ≥

1
k . We �nd that

〈
wI,S , x

〉
>

d∑
j=1

(
max{x2

j −
1
k
, 0}

)1/2

|x j| ≥
∑
j∈J

(
|x j| −

1
|x j|k

)
|x j| ≥

∑
j∈J

x2
j−

d
k

= 1−
∑
j<J

x2
j−

d
k
> 1−

2d
k
,

because the inequality x2
j <

1
k for all j < J implies ∑

j<J x2
j <

d
k . By our choice of k, 2d

k ≤ γ, hence〈
wI,S , x

〉
> 1 − γ as desired.

Next we reason about the cardinality of C(d, γ). The number of d-tuples of non-negative integers
that sum up to k is given by the binomial coe�cient

(
d+k−1

d

)
, which is less than

(
2k
d

)
since k > d by
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our assumption γ < 1
2 . Now using the identity1

(
m
`

)
≤

(
em
`

)`
, we �nd that

|C(d, γ)| ≤ 2d

(
2k
d

)
≤ (4ek/d)d = (2e/γ)d.

Finally, we must prove that for every x ∈ Sd−1, (1 − γ)x is a convex combination of elements of
C(d, γ). Let K denote the set of all convex combinations of elements of C(d, γ), and assume, by
way of contradiction, that (1− γ)x < K. Since K is a closed, convex subset of Rd, the intersection
of all halfspaces containing K is equal to K. Hence, for some non-zero a ∈ Rd and some scalar
b ∈ R, the halfspaceH = {z | 〈a, z〉 ≤ b} contains every point of K but does not contain (1 − γ)x.
Scaling a and b by the same positive scale factor, if necessary, we can assume ‖a‖2 = 1. Then, we
know from earlier in the proof that there must exist some w ∈ C(d, γ) such that 〈a,w〉 > 1 − γ.
As w ∈ K, this implies 1 − γ < b. Now the Cauchy-Schwartz inequality implies

〈a, (1 − γ)x〉 ≤ (1 − γ)‖a‖2‖x‖2 = 1 − γ < b,

contradicting our assumption that (1 − γ)x < H . �

As explained earlier, Lemma 4.1 can be used to prove an “enhanced union bound” that allows
us to show that the probability of a union of in�nitely many events (one for each vector in Rd)
is small, if we can show that the probability of each individual one of the events is small. The
enhanced union bound will be stated in terms of a multiplicative notion of approximation, called
relative error, de�ned as follows.

De�nition 4.1. If y, ŷ ∈ R, and y , 0, the relative error of ŷ approximating y is

η(ŷ, y) =

∣∣∣∣∣ ŷy − 1
∣∣∣∣∣ .

If y = 0, then η(ŷ, y) = 0 if ŷ = 0 and otherwise η(ŷ, y) is in�nite.

In other words, η(ŷ, y) < ε when ŷ is between (1 − ε)y and (1 + ε)y. As an example, the Cherno�
bound shows that when X1, . . . , Xn are independent random variables taking values in [0, 1] and
X = X1 + · · · + Xn, then for any ε > 0 the relation η(X, x) ≤ ε holds with probability at least
1 − e−

1
3 ε

2E[X].

Lemma 4.2 (Enhanced Union Bound). Suppose P is a random symmetric positive semide�nite
matrix in Rd and Q = E[P]. Then for any 0 < β < 1 and 0 < γ < 1,

Pr
(
sup
x∈Rd

η(〈x, Px〉 , 〈x,Qx〉) ≥ β
)
≤

(
2e
γ

)2d

sup
x∈Rd

Pr
(
η(〈x, Px〉 , 〈x,Qx〉) ≥ 1

2 (1 − γ)2β
)
. (11)

1The inequality
(

m
`

)
≤

(
em
`

)`
follows because

∫ `

1 ln(x) dx ≤
∑`

j=2 ln( j) implies (`/e)` ≤ `!, which in turn implies(
m
`

)
≤ m`

`
≤

(
em
`

)`
.
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Before proving the lemma, we pause to interpret Inequality (11). For any �xed x ∈ Rd, the quantity
〈x, Px〉 is a random scalar, and 〈x,Qx〉 is its expected value. The relation η(〈x, Px〉 , 〈x,Qx〉) ≥ β
means that 〈x, Px〉 deviates from its expected value by a factor at least 1 + β, or at most 1 − β.
This is exactly the type of event that is shown to be unlikely by the Cherno� Bound. In fact, in
the applications we will be looking at, P will be a sum of independent random matrices, so for
any �xed x ∈ Rd, the random variable 〈x, Px〉 is a sum of independent, scalar-valued random
variables, and the probability of η(〈x, Px〉 , 〈x,Qx〉) ≥ β will be analyzed using Cherno� bounds
and their generalizations.
Now, let’s think about the two sides of Inequality (11). They di�er in three ways.

1. On the left, the supremum is inside the probability. On the right, it is outside. In other
words, to say that the right side is small means that for every �xed vector x, the probability
that 〈x, Px〉 approximates 〈x,Qx〉 is high, whereas saying that the left side is small means
that with high probability, for all x the quantity 〈x, Px〉 approximates 〈x,Qx〉. The two state-
ments sound very similar but are actually quite di�erent. For example, if D is a random
date on the calendar, then for every �xed human being, the probability that their birthday
di�ers from D is quite high. However, the probability that every human being’s birthday dif-
fers from D is zero: no matter what date we randomly sample, there are quite a few human
beings with that birthday. So, to prove that the right side being small implies that the left
side is small, we will actually need to use some facts about vectors in Rd, it doesn’t just
follow automatically from the laws of logic and probability.

2. On the right, the relative error is (1 − γ)2β rather than β. To make the numbers more
concrete, if we want to conclude that with high probability, for all x the quantity 〈x, Px〉 is
a 20% relative error approximation to 〈x,Qx〉, we will need to assume that for every x, with
high probability 〈x, Px〉 is a 5% relative error approximation to 〈x,Qx〉. (In this example,
we used β = 0.2 and γ = 0.5.)

3. On the right side, there is an extra factor of (2e/γ)2d. As you might have guessed, this
comes from taking a union bound over pairs of elements of C(d, γ). In order for the en-
hanced union bound to be meaningful, the right side needs to be less than 1. Therefore, the
bound is only meaningful when Pr(η(〈x, Px〉 , 〈x,Qx〉) ≥ (1 − γ)2β) is exponentially small
in d. Fortunately, exponential tail bounds such as the Cherno� bound are strong enough
to enable such a conclusion.

Proof of Lemma 4.2. We �rst prove the lemma in the case when Q = 1. Later we will explain how
the general case follows.
Let

C(2)(d, γ) = C(d, γ) ∪ {w ± w′ | w,w′ ∈ C(d, γ)}.

Observe that if C(d, γ) has N elements then C(2)(d, γ) has N2 elements: the N elements of C(d, γ)
and the 2

(
N
2

)
elements of the form w ± w′. Assuming Q = 1 we will show the implication

∃x ∈ Rd η (〈x, Px〉 , 〈x,Qx〉) ≥ β) =⇒ ∃w ∈ C(2)(d, γ) η(〈w, Pw〉 , 〈w,Qw〉) ≥ 1
2 (1 − γ)2β). (12)
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The probability of the event on the left side equals the left side of Inequality (11), whereas the
probability of the event on the right side is bounded above by the right side of Inequality (11) (by
the Union Bound). Hence, Inequality (11) will be established once we show that (12) is valid.
If x ∈ Rd satis�es η (〈x, Px〉 , 〈x,Qx〉) ≥ β) then x , 0. Since the quantity η (〈x, Px〉 , 〈x,Qx〉) is
invariant to scaling x, we may assume without loss of generality that ‖x‖2 = 1 − γ. Then, x is
a convex combination of elements of C(d, γ). Say x =

∑m
i=1 aiwi with ai ≥ 0, ∑m

i=1 ai = 1, and
{w1, . . . ,wm} ⊆ C(d, γ).

Since we are assuming Q = 1 for now, the inequality η (〈x, Px〉 , 〈x,Qx〉) ≥ β) can be rewritten as
| 〈x, (P − 1)x〉 − ‖x‖22| ≥ β‖x‖

2
2 = (1 − γ)2β. Using x =

∑m
i=1 aiwi we rewrite this as

m∑
i=1

m∑
j=1

aia j

〈
wi, (P − 1)w j

〉
≥ (1 − γ)2β. (13)

The coe�cients aia j are non-negative, and ∑m
i=1

∑m
j=1 aia j = 1, so the left side of Inequality (13)

is a weighted average of the inner products
〈
wi, (P − 1)w j

〉
. Consequently at least one of those

inner products is great than or equal to (1−γ)2β. Now, we use the so-called polarization identity2

〈y, Az〉 =
1
4

[
〈y + z, A(y + z)〉 − 〈y − z, A(y − z)〉

]
with y = wi, z = w j, A = P − 1, to conclude that

4(1 − γ)2β ≤
〈
wi + w j, (P − 1)(wi + w j)

〉
−

〈
wi − w j, (P − 1)(wi − w j)

〉
≤

∣∣∣∣〈wi + w j, (P − 1)(wi + w j)
〉∣∣∣∣ +

∣∣∣∣〈wi − w j, (P − 1)(wi − w j)
〉∣∣∣∣ , (14)

hence there exists w ∈ C(2)(d, γ) such that | 〈w, (P − 1)w〉 | > 2(1 − γ)2β ≥ 1
2 (1 − γ)2β 〈w,w〉.

This completes the proof of the implication (12), which �nishes the proof of the enhanced union
bound in the case Q = 1.

For the general case, since Q is a symmetric, positive de�nite matrix it has an orthonormal basis of
eigenvectors b1, . . . ,bd with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd = 0. Let d′ denote the
number of positive eigenvalues, and let B be the d′×d matrix whose rows are the vectors

√
λib>i .

Observe that Q = B>B, or equivalently Q =
∑d

i=1 λibib>i . To con�rm this equation, right-multiply
both sides by the vector bi and verify that the two sides are equal for i = 1, 2, . . . , d.

Now let A denote the d′ × d matrix whose rows are the vectors
√

1
λi

b>i , and observe that AB>

is the d′ × d′ identity matrix. (This follows from the orthonormality of the basis {b1, . . . ,bd}.)
Hence, if P′ = APA>, then

E[P′] = AQA> = (AB>)(BA>) = 1d′ .

Let V denote the nullspace of Q and let W denote the orthogonal complement of V . In other
words, V = {v | Qv = 0} and W = {w | 〈w, v〉 = 0 ∀v ∈ V}. For any vector v ∈ V , we have

2 The polarization identity is valid in any inner product space, when A is self-adjoint with respect to the inner
product. P − 1 is self-adjoint with respect to the standard inner product on Rd because it is a symmetric matrix.
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Pr(〈v, Pv〉 ≥ 0) = 1, because P is supported on the set of positive semide�nite matrices, and
E[〈v, Pv〉] = 〈v,Qv〉 = 0. A random variable that is supported on the non-negative real numbers
and has expected value 0 must take the value 0 with probability 1, hence Pr(〈v, Pv〉 = 0) = 1. For
a vector v and positive semide�nite matrix P, 〈v, Pv〉 = 0 implies Pv = 0, hence we have shown
that for all v ∈ V , Pr(Pv = 0) = 1. Now if x is any vector in Rd, we can write x = v + w where
v ∈ V and w = W . Then

〈x, Px〉 = 〈v, Pv〉 + 2 〈v, Pw〉 + 〈w, Pw〉 = 〈w, Pw〉
〈x,Qx〉 = 〈v,Qv〉 + 2 〈v,Qw〉 + 〈w,Qw〉 = 〈w,Qw〉

η(〈x, Px〉 , 〈x,Qx〉) = η(〈w, Pw〉 , 〈w,Qw〉) (15)

The linear transformation w 7→ Bw is an isomorphism from W to Rd′ with inverse isomorphism
y 7→ A>y. Using these isomorphisms we �nd that

Pr
(
sup
x∈Rd

η(〈x, Px〉 , 〈x,Qx〉) ≥ β
)

= Pr
(
sup
w∈W

η(〈w, Pw〉 , 〈w,Qw〉) ≥ β
)

by Equation (15)

= Pr

 sup
y∈Rd′

η(
〈
A>y, PA>y

〉
,
〈
A>y,QA>y

〉
) ≥ β

 using isomorphism y 7→ A>y

= Pr

 sup
y∈Rd′

η(〈y, P′y〉 , 〈y, y〉) ≥ β
 using P′ = APA> and 1d′ = AQA>

≤

(
2e
γ

)2d

sup
z∈Rd′

Pr
(
η(〈z, P′z〉 , 〈z, z〉) ≥ 1

2 (1 − γ)2β
)

from the Q = 1 case of the lemma

=

(
2e
γ

)2d

sup
w∈W

Pr
(
η(〈x, Px〉 , 〈x,Qx〉) ≥ 1

2 (1 − γ)2β
)

using isomorphism z 7→ Bz

=

(
2e
γ

)2d

sup
x∈Rd

Pr
(
η(〈x, Px〉 , 〈x,Qx〉) ≥ 1

2 (1 − γ)2β
)

by Equation (15).

�

Proposition 4.3. Let P be a random symmetric positive semide�nite matrix in Rd×d, and let Q =

E [P] . Suppose there exist constants α0, κ, n such that for all α in the interval (0, α0) and all vectors
x ∈ Rd, the random scalar quantity 〈x, Px〉 satis�es

Pr(η(〈x, Px〉 , 〈x,Qx〉) ≥ α) ≤ 2e−κα
2n.

Then for all β ∈ (0, 2α0),

Pr
(
sup
x∈Rd

η(〈x, Px〉 , 〈x,Qx〉) ≥ β
)
< 2 exp

(
7d −

κ

9
β2n

)
.
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Proof. Apply Lemma 4.2 with γ = 2e−5/2, and let α = 1
2 (1 − γ)2β. By our choice of γ and our

assumption β < 2α0, we have α < α0. Hence,

sup
x∈Rd

Pr(η(〈x, Px〉 , 〈x,Qx〉) ≥ α) ≤ e−κα
2n = 2e−

κ
4 (1−γ)4β2n < 2e−

κ
9β

2n.

Applying Lemma 4.2,

Pr
(
sup
x∈Rd

η(〈x, Px〉)) ≥ β
)
< 2

(
2e
γ

)2d

e−
κ
9β

2n = 2e7de−
κ
9β

2n,

which completes the proof. �

Remark 4.1. In applications of Proposition 4.3 it is often the case that P is a sum of independent
random matrices, and that the parameter n is equal to, or is a function of, the number of indepen-
dent summands. In these applications the parameter κ, on the other hand, is typically a universal
constant that doesn’t scale with n. This explains the (somewhat strange and arbitrary) decision
to distinguish the constant κ from the parameter n in the statement and proof of Proposition 4.3,
even though κ and n never appear separately but only in the form of the product κn. In other
words, the decision to represent the number κn as a product of a constant κ and a parameter n is
purely for mnemonic purposes, to make it easier to work out the implications of Proposition 4.3
in settings where there is a natural “problem size” parameter, n, representing the number of data
points, vertices of a graph, or some such quantity.

4.1 Analyzing the SVD on random samples

As a �rst application of Proposition 4.3, we analyze the sample complexity of estimating the top
singular vector of a Gaussian covariance matrix, given independent random samples from the
distribution.
Suppose a1, . . . , an ∈ R

d are independent random samples from the distribution N (0, BB>). Let
A> denote a n × d matrix whose n rows are the vectors a>1 , . . . , a

>
n , and let v̂ denote the top right

singular vector of A>. We wish to understand how large n must be, as a function of d, ε, δ, so that

Pr (〈v̂, v1〉 ≥ 1 − ε) ≥ 1 − δ,

where v1 is the top right singular vector of B>.

To see how this problem relates to matrix tail bounds such as Proposition 4.3, observe that

E[AA>] =

n∑
i=1

E
[
ai.a>i

]
= nBB>,

so if we de�ne Pi = aia>i , P = P1 + · · · + Pn = AA>, and Q = E[P] = nBB>, we see that
Proposition 4.3 asserts that for n large enough, with high probability AA> is a good approximation
to nBB>, in the sense that for all x ∈ Rd, the inner product 〈

x, AA>x
〉

= ‖A>x‖22 approximates
the inner product 〈

x, nBB>x
〉

= n‖B>x‖22 with small relative error. Since v̂ is the unit vector that
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maximizes ‖A>x‖22 and v1 is the unit vector that maximizes n‖B>x‖22, if ‖A>x‖22 ≈ n‖B>x‖22 for all
x, then it should be possible to prove that the v̂ is a good approximation to v1.
Before we can apply Proposition 4.3 we need to be able to show that for all x ∈ Rd, the random
variable 〈x, Px〉 approximates its expected value with small relative error. This would be easy
to do, using the Cherno� bound, if the variable 〈x, Px〉 were a sum of independent [0, 1]-valued
random variables, but it’s not. Instead

〈x, Px〉 =

n∑
i=1

〈x, Pix〉 =

n∑
i=1

〈
x, aia>i x

〉
=

n∑
i=1

〈x, ai〉
2 ,

and each summand 〈x, ai〉 a Gaussian random variable with distribution N (0, ‖B>x‖22). Thus, we
need a tail bound for sums of squares of Gaussian random variables that is qualitatively similar
to the Cherno� bound. The following lemma serves that purpose.

Lemma 4.4. If X1, X2, . . . , Xn are independent, identically distributed Gaussian random variables,
each with expected value zero, and Y = X2

1 + · · · + X2
n , then for 0 < α < 1 we have

Pr (η(Y,EY) > α) < 2e−
1
8α

2n.

Proof. For any λ > 0, the distribution of η(Y,EY) is unea�ected if we replace Y with λY . Hence,
we may assume without loss of generality that each Xi has variance 1. Letting Yi = X2

i , the
cumulant generating function of Yi is

K(t) = lnE
[
etYi

]
= lnE

[
etX2

i

]
. (16)

To compute the expected value on the right side we can directly evaluate the integral.

E
[
etX2

i

]
=

√
1

2π

∫ ∞

−∞

etx2− 1
2 x2

dx

=

√
1

2π

∫ ∞

−∞

e−
1
2 (1−2t)x2

dx

=

√
1

1 − 2t
·

√
1

2π

∫ ∞

−∞

e−
1
2 u2

du

=

√
1

1 − 2t
,

for t < 1
2 . (Here, we used the substitution u =

√
1 − 2tx to evaluate the integral, and the assump-

tion t < 1
2 was necessary in order for the factor

√
1 − 2t to be a positive real number.) Substituting

this formula for the expected value into Equation (16), we obtain the formula

K(t) =
1
2

ln
(

1
1 − 2t

)
, (17)

which is valid for t < 1
2 . Now, since Y is the sum of n independent random variables each with

cumulant generating function K(t) = 1
2 ln

(
1

1−2t

)
, the cumulant generating function of Y is KY(t) =
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n
2 ln

(
1

1−2t

)
. Using Lemma 3.3, we have

Pr(Y ≥ (1+α)E[Y]) ≤ exp
(
n
2

ln
(

1
1 − 2t

)
− t(1 + α)E[Y]

)
= exp

(
n
2

ln
(

1
1 − 2t

)
− (1 + α)tn

)
. (18)

The exponent on the right is minimized when t = α
2(1+α) and 1

1−2t = 1 + α. Then

Pr(Y ≥ (1 + α)E[Y]) ≤ exp
(n
2

(ln(1 + α) − α)
)
< exp

(
−

1
8
α2n

)
, (19)

where we have used the inequality α − ln(1 + α) > 1
4α

2, which is valid for 0 < α < 1. (The
validity can be con�rmed by verifying that the left and right sides are equal when α = 0, and the
derivative of the left side exceeds the derivative of the right side when 0 < α < 1.)
A second application of Lemma 3.3 with t = α

2(1−α) and 1
1+2t = 1 − α implies

Pr(Y ≤ (1 − α)E[Y]) ≤ exp
(
n
2

ln
(

1
1 + 2t

)
+ (1 − α)tn

)
≤ exp

(n
2

(α + ln(1 − α))
)
< exp

(
−

1
4
α2n

)
,

where we have used the inequality −α − ln(1 − α) > 1
2α

2, which is valid for 0 < α < 1. (Again,
the validity can be con�rmed by verifying that the left and right sides are equal when α = 0, and
the derivative of the left side exceeds the derivative of the right side when 0 < α < 1.) �

Corollary 4.5. If X1, X2, . . . , Xn are independent, identically distributed Gaussian random variables,
each with expected value zero, and Y = X2

1 + · · · + X2
n , then for 0 < ε < 1 we have

Pr
(
Y ≤ (1 − ε)2EY

)
≤ e−

1
2 ε

2n, Pr
(
Y ≥ (1 + ε)2EY

)
≤ e−

1
2 ε

2n.

Proof. Using Inequality (19) from the proof of Lemma 4.4, with α = 2ε + ε2, we �nd that

Pr
(
Y ≥ (1 + ε)2EY

)
= Pr (Y ≥ (1 + α)EY) ≤ exp

(n
2

(ln(1 + α) − α)
)
.

The inequality ln(1 + ε) ≤ ε along with the equation 1 + α = (1 + ε)2 imply

ln(1 + α) − α = 2 ln(1 + ε) − 2ε − ε2 = 2(ln(1 + ε) − ε) − ε2 ≤ −ε2,

so Pr(Y ≥ (1 + ε)2EY) ≤ exp(−1
2ε

2n) as claimed.
Using Inequality (20) from the proof of Lemma 4.4, with α = 2ε − ε2, we �nd that

Pr
(
Y ≥ (1 − ε)2EY

)
= Pr (Y ≥ (1 − α)EY) ≤ exp

(n
2

(α + ln(1 − α))
)
.

The inequality ln(1 − ε) ≤ −ε along with the equation 1 − α = (1 − ε)2 imply

α + ln(1 − α) = 2ε − ε2 + 2 ln(1 − ε) = 2(ε + ln(1 − ε)) − ε2 ≤ −ε2,

so Pr(Y ≤ (1 − ε)2EY) ≤ exp(−1
2ε

2n) as claimed. �
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We now have all the ingredients in place to analyze the sample complexity of estimating the top
singular vector of a Gaussian covariance matrix using SVD.

Proposition 4.6. For a d × d matrix B with singular values σ1 > σ2 ≥ σ3 ≥ σd, suppose that A is
a d × n matrix whose columns are independent samples fromN (0, BB>). Let v1 denote the top right
singular vector of B>, and let v̂ denote the top right singular vector of A>. If 0 < ε < 0.3, δ > 0, and

n > 100
ε2

(
1 − σ2

2
σ2

1

)−2
(7d + ln(2/δ)) then

Pr (|〈v̂, v1〉| ≥ 1 − ε) ≥ 1 − δ.

Proof. Let a1, . . . , an denote the columns of the matrix A. For any x ∈ Rd we have

〈
x, AA>x

〉
=

n∑
i=1

〈x, ai〉
2 ,

and each of the inner products 〈x, ai〉 is independently sampled from a Gaussian distribution with
mean 0 and variance ‖B>x‖22. According to Lemma 4.4, for any 0 < α < 1,

Pr
(
η(

〈
x, AA>x

〉
,
〈
x, nBB>x

〉
) ≥ α

)
< 2e−

1
8α

2n.

Now applying Proposition 4.3 with κ = 1
8 , we �nd that for any 0 < β < 1,

Pr
(
sup
x∈Rd

η(
〈
x, AA>x

〉
,
〈
x, nBB>x

〉
) ≥ β

)
< 2e7d− β

2
72 n. (20)

Let β =
(
1 − σ2

2/σ
2
1

) (
ε − 1

2ε
2
)
. Since ε < 0.3 we have

β2 =

(
1 −

σ2
2

σ2
1

)2

ε2
(
1 −

1
2
ε

)2

>

(
1 −

σ2
2

σ2
1

)2

ε2 · (0.85)2

β2n > 100 · (0.85)2 · (7d + ln(1/δ)) > 72(7d + ln(2/δ))

7d −
β2

72
n < − ln(2/δ) = ln(δ/2)

hence the right side of Inequality (20) is less than δ.
We have shown that with probability at least 1 − δ, it holds that

sup
x∈Rd

η(
〈
x, AA>x

〉
,
〈
x, nBB>x

〉
) < β. (21)

To conclude the proof we need to show that this property implies |〈v̂, v1〉| ≥ 1−ε. By the de�nition
of the SVD, v̂ is the unit vector that maximizes 〈

v, AA>v
〉
. In particular,〈

v1, AA>v1
〉
≤

〈
v, AA>v

〉
. (22)
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Now let v̂ = av1 + bw, where w is a unit vector orthogonal to v1, and a2 + b2 = 1. Recall from
the de�nition of singular values that for all unit vectors w orthogonal to v1, ‖B>w‖2 ≤ σ2, which
implies 〈

w, BB>w
〉
≤ σ2

2. Applying Inequality (21), we �nd〈
v1, AA>v1

〉
≥ (1 − β)

〈
v1, nBB>v1

〉
= (1 − β)nσ2

1 (23)〈
v̂, AA>v̂

〉
≤ (1 + β)

(〈
av1 + bw, nBB>(av1 + bw)

〉)
= (1 + β)n(a2σ2

1 + b2σ2
2)

= (1 + β)nσ2
1

(
1 − b2

(
1 −

σ2
2

σ2
1

))
. (24)

Combining Inequalities (21), (23), (24), we �nd that

(1 − β)nσ2
1 ≤ (1 + β)nσ2

1

(
1 − b2

(
1 −

σ2
2

σ2
1

))
1 − β
1 + β

≤ 1 − b2
(
1 −

σ2
2

σ2
1

)
2β

1 + β
≥ b2

(
1 −

σ2
2

σ2
1

)
2β

(
1 −

σ2
2

σ2
1

)−1

≥ b2(1 + β) ≥ b2

2ε − ε2 ≥ b2

1 − (2ε − ε2) ≤ 1 − b2 = a2.

Since the left side of the last line is (1 − ε)2, we have shown that (1 − ε)2 ≤ a2, or |a| ≥ 1 − ε.
Recalling that v̂ = av1 + bw with 〈w, v1〉 = 0, we have

|〈v̂, v1〉| = |a 〈v1, v1〉 + b 〈w, v1〉| = |a| ≥ 1 − ε,

as desired. �

4.2 The Ahlswede-Winter Inequality

In this section we present a stronger exponential tail bound for random matrices, in which the
probability of violating the bound has only polynomial dependence on the dimension, rather
than the exponential dependence in Proposition 4.3. Unfortunately the proof of the inequality is
beyond the scope of these notes.

Theorem 4.7 (Ahlswede-Winter Inequality). Suppose P1, X2, . . . , Pm are mutually independent
random, symmetric, positive semide�nite d × d matrices, let P = P1 + · · · + Pm, and let Q = E[P].
If r > 0 is a scalar such that for all i and all x ∈ Rd, 〈x, Pix〉 ≤ 1

r 〈x,Qx〉 with probability 1, then for
all β ∈ (0, 1),

Pr
(
sup
x∈Rd

η(〈x, Px〉 , 〈x,Qx〉) ≥ β
)
≤ 2d · e−

1
4β

2r. (25)
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To compare the Ahlswede-Winter Inequality with Proposition 4.3, it is useful to note that the
assumption 〈x, Pix〉 ≤ 1

r 〈x,Qx〉 implies, using the Cherno� Bound with the [0, 1]-valued random
variables Yi = r 〈x,Pix〉

〈x,Qx〉 , that for all x ∈ Rd and all 0 < α < 1,

Pr (η(〈x, Px〉 , 〈x,Qx〉) ≥ α) ≤ 2e−
1
3α

2r = 2e−κα
2n

where κ = r/(3n). Hence, we can conclude using Proposition 4.3 that

Pr
(
sup
x∈Rd

η(〈x, Px〉 , 〈x,Qx〉) ≥ β
)
≤ 2e7d · e−

κ
9β

2n
= 2e7d · e−

1
27β

2r

The Ahlswede-Winter Inequality improves upon this bound in two respects: the constant 1
27 is

improved to 1
4 , but much more importantly the factor e7d is improved to d. Recall that Propo-

sition 4.3 is proven by taking the union bound over the exponentially number of vectors that
constitute the set C(d, 2e−5/2), and the factor 2e7d on the right side of the inequality re�ects the
exponential number of “bad events” in this application of the union bound. Replacing this factor
of 2e7d with 2d on the right side of the Ahlswede-Winter Inequality means that the inequality
is as e�cient, quantitatively, as a union bound over only 2d “bad events.” Conceptually, it is as
if we only need to worry about η(〈x, Px〉 , 〈x,Qx〉) being large as x ranges over a basis of Rd. In
actuality, the proof of the Ahlswede-Winter Inequality doesn’t use the union bound at all, so this
discussion is only meant to give some intuition about how to evaluate the power of the inequality
in quantitative terms.

4.3 The Stochastic Block Model

As a second application of matrix tail bounds, we investigate the “community detection”problem
in which one is given the adjacency matrix of an undirected graph (e.g., a social network) and one
wants to �nd a labeling of the vertices such that edges occur more frequently between vertices
that share a label than between di�erently-labeled vertices.
A frequently used model of community structure in networks is the stochastic block model, which
de�nes a probability distribution over graphs with a given vertex set, V . In this model, each vertex
u of the graph has a label σu and the probability that the graph contains an edge between u and
v, conditional on the labeling σ, is

puv =

pin if σu = σv

pout = if σu , σv.

Here, pin and pout are two parameters of the model satisfying 0 ≤ pout < pin ≤ 1. The labeling σ
may be modeled as random or non-random. In our model we will treat σ as a �xed, non-random
labeling. However, the input to the community detection problem consists only of the vertices
and edges of the graph; the labels of the vertices are not revealed in the input but must instead
be (approximately) inferred from the given data.
In this section we will make two simplifying assumptions.
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1. There are only two possible labels for a vertex: the labeling σ will be represented as a
vector in {±1}n. Note that this means two vertices u, v have the same label or di�erent
labels according to whether σuσv = 1 or σuσv = −1.

2. The graph has an even number of vertices, n, and the labeling divides them into two groups
of equal size: ∑u∈V σu = 0.

Under these assumptions, we will be interested in the question: for what values of n, pin, pout can
we calculate a labeling σ̂ that is signi�cantly more correlated with σ than a random labeling?
One way of formalizing this objective is to insist that | 〈σ̂,σ〉 | ≥ (1 − 2ε)n for some speci�ed
ε > 0 When one �nds a labeling that meets this objective, it means that either σ̂ or its negation,
−σ̂, labels at least 1 − ε fraction of the vertices correctly.
We can begin to see how this subject relates to random matrices when we think about the adja-
cency matrix of the graph G. In the vector space RV of real-valued functions on the vertices of
G, there is a standard basis containing, for each vertex v, a vector ev that represents the function
taking the value 1 at v and 0 everywhere else. An edge e = {u, v} in the graph is represented in
the adjacency matrix by setting two entries to the value 1: one in row u and column v, another
in row v and column u. In other words, the adjacency matrix of a graph G with vertex set V and
edge set E is

AG =
∑
{u,v}∈E

eue>v + eve>u .

When edges of G are sampled independently at random (as in the stochastic block model, when
the labeling σ is �xed) the individual terms of this sum become independent random matrices.
However, we are not quite ready to apply Proposition 4.3 to reason about the random matrix AG,
since the summands eue>v + eve>u are not positive de�nite matrices. To circumvent this di�culty,
we will make use of a di�erent sum of random matrices, where the terms are symmetric and
positive semide�nite by construction.

LG =
∑
{u,v}∈E

(eu − ev)(eu − ev)> (26)

The matrix LG is called the Laplacian matrix of G. Its digaonal entries are the degrees of the
vertices of G, because the matrix eue>u appears once in the sum for every edge {u, v}. Its o�-
diagonal entries match those of−AG, the negation of the adjacency matrix. For the stochstic block
model with labelingσwe can calculateE[LG] quite easily. Let p = 1

2 (pin+pout) and q = 1
2 (pin−pout),

so that pin = p + q while pout = p − q. We �nd that

E[LG]u,v =


n
2 (pin + pout) − pin if u = v
−pin if u , v, σu = σv

−pout if σu , σv

= pnδu,v − p − qσuσv. (27)

This formula for the entries of the expected Laplacian, E[LG], can be summarized more succinctly
by the equation

E[LG] = pn1 − p11> − qσσ>. (28)
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From Equation (28) we can deduce3 the eigenvectors and eigenvalues of the expected Laplacian
matrix E[LG]. The smallest eigenvalue is 0, with eigenvector 1. The next-smallest eigenvalue
is (p − q)n, with eigenvector σ. The remaining eigenvalue is pn, with multiplicity n − 2. The
eigenspace corresponding to this eigenvalue is the (n−2)-dimensional space of vectors orthogonal
to both 1 and σ.
Now let’s consider the random matrix LG. The smallest eigenvalue is again 0, with eigenvector
1, because in the sum de�ning the Laplacian LG, each of the summands (eu − ev)(eu − ev)> has
1 in its nullspace. When x ranges over unit vectors orthogonal to 1, the expected value of the
inner product 〈x, LGx〉 is minimized when x is parallel to σ, which for unit vectors x occurs when
x = ±

√
1/n · σ. Hence, a natural plan for identifying the community structure in the network is

to compute the eigenvector y of LG corresponding to its second-smallest eigenvalue. This vector
will be orthogonal to 1, and if the eigenvectors of LG are close to those of E[LG] then y should be
close to σ.

Algorithm 2 Stochastic block model algorithm
1: Compute the Laplacian matrix LG and its eigenvectors.
2: Let y denote the eigenvector corresponding to the second-smallest eigenvalue of LG.
3: Output the labeling σ̂ de�ned by setting σ̂v = +1 if yv ≥ 0, σ̂v = −1 if yv < 0.

To analyze the correctness of the algorithm, the following lemma concerning symmetric matrices
and their eigenspaces will be useful.

Lemma 4.8. Suppose A is a symmetric matrix with eigenvalues λ1, λ2, . . . , λk and corresponding
eigenspaces V1,V2, . . . ,Vk. The spaces V1, . . . ,Vk are pairwise orthogonal (meaning each vector in Vi

is orthogonal to each vector in V j when 1 ≤ i < j ≤ k) and every x ∈ Rn can be written uniquely in
the form x = a1x1 +a2x2 +· · ·+akxk, where xi is an element of Vi satisfying ‖xi‖2 = 1, for i = 1, . . . , k.
Furthermore, ‖‖x2

2 = a2
1 + a2

2 + · · · + a2
k , and

〈x, Ax〉 = λ1a2
1 + λ2a2

2 + · · · + λka2
k .

3 The derivation of the eigenspaces and eigenvalues of E[LG] is accomplished by repeatedly applying the fol-
lowing principle: if A and B are two matrices and v is an eigenvector of both A and B, with eigenvalues λA and λB

respectively, then v is also an eigenvector of A + B with eigenvalue λA + λB.
Applying this principle to E[LG] = pn1 − p11> − qσσ>, we can reason about the eigenvalues as follows. First,

the matrix A = pn1 is a scalar multiple of the identity matrix, so every vector is an eigenvector of A with eigenvalue
pn. Next, the matrix B = −p11> is a symmetric rank-one matrix, so it has two eigenspaces: a one-dimensional
eigenspace generated by 1, with eigenvalue −pn, and an (n− 1)-dimensional eigenspace consisting of all the vectors
orthogonal to 1, with eigenvalue 0. Finally, the matrix C = −qσσ> is also a symmetric rank-one matrix, so it also has
two eigenspaces: a one-dimensional eigenspace generated by σ, with eigenvalue −qn, and an (n − 1)-dimensional
eigenspace consisting of all the vectors orthogonal to σ, with eigenvalue 0. Putting all this information together,
we conclude that the matrix E[LG] = A + B + C has a one-dimensional eigenspace generated by 1, with eigenvalue
pn− pn = 0, another one-dimensional eigenspace generated by σ, with eigenvalue pn−qn = (p−q)n, and �nally an
(n−2)-dimensional eigenspace consisting of the vectors orthogonal to both 1 andσ,with eigenvalue pn. Note that in
order for us to derive the eigenspaces and eigenvalues using this method, it was convenient that 1 was an eigenvector
of C and that σ was an eigenvector of B; both of these convenient facts were true because of our assumption that
the two communities are of equal size, i.e. 〈1,σ〉 = 0. Without that assumption, the calculation of the eigenspaces
and eigenvectors of E[LG] would have been more involved.
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Proof. The lemma is clearly true when A is a diagonal matrix. For the general case, we use the
fact that every symmetric matrix can be written in the form A = QDQ> where Q is orthog-
onal and D is diagonal. Letting W1, . . . ,Wk denote the eigenspaces of D, we �nd that A has
eigenspaces Vi = QWi for i = 1, . . . , k, with the same eigenvalues. These are pairwise or-
thogonal since left-multiplication by Q preserves orthogonality. Furthermore, if x = Qy then
〈x, Ax〉 = 〈Qy,QDy〉 = 〈y,Dy〉 since Q preserves inner products. Hence, the formula for 〈x, Ax〉
follows from the corresponding formula for 〈y,Dy〉 . �

Proposition 4.9. If n ∈ N satis�es the inequality n > 32p2

ε2q2(p−q) ln(2n/δ) then with probability at
least 1− δ, Algorithm 2 outputs a labeling σ̂ such that either σ̂ or −σ̂ labels at least (1− ε)n vertices
correctly.

Proof. The proof will be an application of Theorem 4.7, which means that we need to write LG as
a sum of independent random symmetric positive semide�nite matrices. Let W denote the set of
unordered pairs of vertices {u, v}, and for any {u, v} ∈ W let Yuv equal 1 if {u, v} ∈ E, 0 if not. Then
we can express LG as

LG =
∑
{u,v}∈W

Yuv(eu − ev)(eu − ev)> =
∑
{u,v}∈W

Puv,

where the matrices Puv = Yuv(eu − ev)(eu − ev)> are independent, random, symmetric, positive
semide�nite matrices. We wish to apply the Ahlswede-Winter Inequality, with P =

∑
{u,v}∈W Puv

and Q = E[P] = LG. To do so, we need to �nd a value of r such that for all x ∈ Rd and all {u, v} ∈ W ,
〈x, Puvx〉 ≤ 1

r 〈x,Qx〉 . We will decompose x as a sum of eigenvectors of Q and apply Lemma 4.8.
Let 1̄ =

√
1/n · 1 and σ̄ =

√
1/n · σ denote the unit-length eigenvectors of Q corresponding to

the eigenvalues 0 and (p− q)n, respectively. If we write x = a1̄ + bσ̄+ cw, where w is orthogonal
to 1 and σ and ‖w‖2 = 1, then from our calculation of the eigenvalues of Q we know that

〈x,Qx〉 = b2(p − q)n + c2 pn ≥ (b2 + c2)(p − q)n.

Meanwhile,

〈x, Puvx〉 = Yuv
〈
x, (eu − ev)(eu − ev)>x

〉
= Yuv 〈x, eu − ev〉

2

= Yuv

〈
a1̄ + bσ̄ + cw, eu − ev

〉2

= Yuv 〈bσ̄ + cw, eu − ev〉
2

≤ Yuv ‖bσ̄ + cw‖22 ‖eu − ev‖
2
2 = 2Yuv(b2 + c2) ≤ 2(b2 + c2).

Hence, if we set r =
(p−q)n

2 then 〈w, Puvw〉 ≤ 1
r 〈w,Qw〉 is guaranteed to hold. Applying the

Ahlswede-Winter Inequality, we conclude that for any β > 0,

Pr
(
sup
x∈Rn

η(〈x, Px〉 , 〈x,Qx〉) ≥ β
)
≤ 2n · e−

p−q
8 β2n.

Let β =
εq/2

p−q+εq/2 and observe that
β

1 − β
=

εq
2(p − q)

, (29)
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an equation which will justify this choice of β when we use it later on. Suppose that

sup
x∈Rn

η(〈x, Px〉 , 〈x,Qx〉) ≤ β. (30)

We wish to prove that under this assumption, the relation | 〈y, σ̄〉 |2 ≥ 1 − ε holds. The assump-
tion (30) holds with probability at least 1 − 2n · e−(p−q)β2n/8, which is greater than 1 − δ when
n > 32p2

ε2q2(p−q) ln(2n/δ).
Since y is orthogonal to 1, it may be written as a sum of eigenvectors of Q belonging to the other
two eigenspaces: y = aσ̄ + bw, where ‖w‖2 = 1 and 〈1,w〉 = 〈σ,w〉 = 0. Assuming without loss
of generality that ‖y‖22 = 1, we have a2 + b2 = 1. Now, by assumption (30), we have

〈σ̄, LGσ̄〉 ≤ (1 + β) 〈σ̄,Qσ̄〉 = (1 + β)(p − q)n

〈y, LGy〉 ≥ (1 − β) 〈y,Qy〉 = (1 − β)
[
a2 〈σ,Qσ〉 + b2 〈w,Qw〉

]
= (1 − β)

[
a2(p − q)n + b2 pn

]
= (1 − β)

[
(p − q)n + b2qn

]
.

Since y was chosen to minimize 〈y, LGy〉 among all vectors orthogonal to 1, and σ̄ is orthogonal
to 1, it must be the case that 〈y, LGy〉 ≤ 〈σ̄, LGσ̄〉. Hence,

(1 − β)
[
(p − q)n + b2qn

]
≤ (1 + β)(p − q)n

(p − q)n + b2qn
(p − q)n

≤
1 + β

1 − β

1 +
b2q

p − q
≤ 1 +

2β
1 − β

= 1 +
εq

p − q

where we have used Equation (29) on the last line. It follows that b2 ≤ ε and a2 ≥ 1 − ε, hence

| 〈y, σ̄〉 | = |a| ≥
√

1 − ε.

Our �nal task is to prove that±σ̂ labels at least 1−ε fraction of vertices correctly. Assume without
loss of generality that 〈y, σ̄〉 ≥

√
1 − ε; otherwise, replace y with −y and σ̂ with −σ̂. Now let z

denote the vector de�ned by

zu =


√

1/n · σu if yuσu > 0
0 if yuσu ≤ 0.

Observe that yuzu ≥ yuσ̄u for all u, so 〈y, z〉 ≥ 〈y, σ̄〉 ≥
√

1 − ε. By the Cauchy-Schwartz Inequal-
ity, ‖y‖2‖z‖2 ≥ 〈y, z〉. Since ‖y‖2 = 1, we �nd that ‖z‖22 ≥ 〈y, z〉

2
≥ 1 − ε. Recalling how z was

de�ned, this means there are at least (1 − ε)n vertices u such that yuσu > 0. Every such u will be
correctly labeled by Algorithm 2. �

Remark 4.2. Using the inequality
√

2n/δ > ln(2n/δ), we can deduce that the inequality n >
32p2

ε2q2(p−q) ln(2n/δ) is satis�ed whenever n > 2048p4

ε4q4(p−q)2δ
. However, the latter bound is typically far

greater than the true sample complexity of community detection, since the inequality
√

2n/δ >
ln(2n/δ) has a great deal of slack when n is large and δ is small.
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5 Randomized Algorithms

In Sections 3 and 4 we saw some applications of probability theory to average-case analysis of
algorithms: the study of how algorithms perform on typical samples from a probability distribu-
tion. Three examples were the analysis of empirical risk minimization for hypothesis selection,
singular value decomposition on Gaussian random samples, and community detection in the
stochastic block model.
The other area where probability theory meets analysis of algorithms is randomized algorithms,
in which the input data is not assumed to be random, but the algorithm uses internal randomness
(metaphorically, it tosses coins) and the goal is to show that even for worst-case inputs, the al-
gorithm satis�es some correctness (or approximate correctness) property, with high probability
over the outcomes of its own coin tosses.

5.1 Dimensionality Reduction

Suppose you have a dataset consisting of vectors x1, x2, . . . , xn in Rd. For example, this could be
a collection of photos, each represented as a vector. The representation of a photo could be a
vector of raw pixel values or, more likely, the output of an image processing algorithm. We are
primarily interested in the case when n and d are both quite large. We will be implicitly assuming
that the encoding of data as vectors has the property that similarity of data items translates to
proximity, in the L2 norm, between their corresponding vectors.
We are interested in projecting the data into a lower dimension, k, such that all distances between
pairs of points are approximately preserved. This greatly reduces the computational cost of work-
ing with the data (e.g., searching for points near a speci�ed query point) and the communication
cost of sending information about the data points over a network.
In this section we will analyze a very simple dimensionality reduction algorithm due to Johnson
and Lindenstrauss. The idea is simply to project the data from Rd to Rk using a linear transfor-
mation represented by a matrix with independent, identically distributed Gaussian entries. For
now we will leave the dimension of the target space, k, as an indeterminate. Later we will see
that for the purpose of preserving distances up to multiplicative error ε, it is appropriate to set
k = O

(
log n
ε2

)
.

Lemma 5.1 (Johnson-Lindenstrauss Lemma). For any x1, x2, . . . , xn ∈ R
d and any 0 < ε, δ < 1, if

k > 4 ln(n/δ)/ε2 andR is a k×d randommatrix with independent entries drawn from the distribution
N (0, 1

k ), then with probability at least 1 − δ the inequality

(1 − ε)‖xi − x j‖2 ≤ ‖Rxi − Rx j‖2 ≤ (1 + ε)‖xi − x j‖2

holds for all 1 ≤ i, j ≤ n.

Proof. Consider any vector y ∈ Rd. (Later we will be setting y = xi − x j.) Our �rst task will be
to compute the expected value of ‖Ry‖22. Denote the rows of R by r1, . . . , rk. Then the compo-
nents of the vector Ry are 〈r1, y〉 , 〈r2, y〉 , . . . 〈rk, y〉. Letting Y = ‖Ry‖22 we see that Y =

∑k
i=1 X2

i
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where the random variables Xi = 〈ri, y〉 are Gaussian with distribution N (0, 1
k ‖y‖

2
2). This implies

that E[X2
i ] = 1

k ‖y‖
2
2 for all i and that E[Y] = ‖y‖22. Furthermore, using steps from the proof of

Lemma 4.4, for 0 < ε < 1 we have

Pr(Y ≥ (1 + ε)2‖y‖22) ≤ e−
1
2 ε

2k, Pr(Y ≤ (1 − ε)2‖y‖22) ≤ e−
1
2 ε

2k (31)

As y ranges over all
(

n
2

)
vectors of the form xi − x j, we can use the Union Bound together with

inequality (31) to verify that

Pr
(
∀i, j (1 − ε)2‖xi − x j‖

2
2 ≤ ‖Rxi − Rx j‖

2
2 ≤ (1 + ε)2‖xi − x j‖

2
2

)
≥ 1 − 2

(
n
2

)
e−

1
2 ε

2k. (32)

Since 2
(

n
2

)
< n2, the probability on the right side will be greater than 1 − δ if e−

1
2 ε

2k < δ/n2, which
happens when k > 4 ln(n/δ)/ε2. �

5.2 Sparse Recovery

We have seen that a random projection from Rn to RO(log(n)/ε2) approximately preserves the dis-
tance between every two elements of a �nite set of n vectors. In this section we will see that it
also approximately preserves the distance between every two sparse vectors, i.e. those with few
non-zero components. Putting this fact to use, we will show how to e�ciently recover a sparse
vector x given the vector Rx, where R is a Gaussian random matrix.

Lemma 5.2. For any s ∈ N and 0 < ε, δ < 1, if k > 72ε−2(log(2/δ) + 7s) and R is a k × s matrix
with independent random entries drawn from N (0, 1

k ), then with probability at least 1 − δ every
x ∈ Rs satis�es

(1 − ε)‖x‖22 ≤ ‖Rx‖22 ≤ (1 + ε)‖x‖22. (33)

Proof. Let r>1 , . . . , r
>
k denote the rows of R. For each i, the random vector ri is a sample from

N (0, 1
k1), so E[rir>i ] = 1

k1. Consequently the matrix P = R>R =
∑k

i=1 rir>i is a sum of independent
random symmetric positive de�nite matrices, and

E[P] =

k∑
i=1

E[rir>i ] = k ·
1
k
1 = 1.

Applying Proposition 4.3 we �nd that

Pr
(
sup
x∈Rs

η(
〈
x,R>Rx

〉
, 〈x, x〉) ≥ ε

)
≤ 2 exp

(
7s − ε2

72k
)
≤ δ,

by our assumption that ε2

72k−7s > ln(2/δ).Using the relations 〈
x,R>Rx

〉
= ‖Rx‖22 and 〈x, x〉 = ‖x‖22,

we �nd that the relation η(
〈
x,R>Rx

〉
, 〈x, x〉) ≤ ε is equivalent to inequality (33) in the statement

of the lemma. Therefore, that inequality holds with probability at least 1 − δ as claimed. �
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De�nition 5.1. A vector x ∈ Rn is s-sparse if at least n − s coordinates of x are equal to zero. A
matrix R satis�es the s-restricted isometry property with constant εs if the inequalities

(1 − εs)‖x‖22 ≤ ‖Rx‖22 ≤ (1 + εs)‖x‖22 (34)

are satis�ed for every s-sparse vector x.

Proposition 5.3. For every s ≥ 3 and 0 < ε, δ < 1, if n ≥ s and k > 72ε−2(s ln(n) + ln(2/δ)), then
a k × n matrix R with independent random entries sampled from N (0, 1

k ) satis�es the s-restricted
isometry property with constant ε, with probability at least 1 − δ.

Proof. For any subset J ⊆ [n] with |J| = s, let RJ be the submatrix of R obtained by selecting the
subset of columns indexed by J. Our plan is to use Lemma 5.2 to prove that with high probability
R preserves the length of each vector x that satis�es xi = 0 for all i < J, then use the Union Bound
over all choices of J to deduce that R satis�es the restricted isometry property with probability
at least 1 − δ. Let m denote the number of subsets J ⊆ [n] with |J| = s, and note that

m =

(
n
s

)
<

(
en
s

)s
< ns,

since the identity
(

n
s

)
<

(
en
s

)s
holds for all n, s and our assumption s ≥ 3 implies e

s < 1. Note that
ln(2m/δ) < s ln(n)+ ln(2/δ).According to Lemma 5.2, with probability at least 1−δ/m, the matrix
RJ obtained by selecting the subset of columns of R indexed by J satis�es

∀y ∈ Rs (1 − ε)‖y‖22 ≤ ‖RJy‖22 ≤ (1 + ε)‖y‖22,

which implies that (34) is satis�ed by every x ∈ Rn with sparsity pattern J. Taking the union
bound over all J, we �nd that with probability at least 1 − δ, R satis�es the s-restricted isometry
property with constant ε. �

The main application of matrices with the restricted isometry property is to solve an inverse
problem called sparse recovery where the aim is to identify a sparse vector x ∈ Rn given the
value of b = Rx ∈ Rk. When k < n this is an underdetermined linear system, meaning there
are in�nitely many vectors y solving the equation Ry = b. The set of all such solutions forms a
(n− k)-dimensional a�ne subspace of Rn, but we will see that there is a unique s-sparse solution
provided that R satis�es the 3s-restricted isometry property with ε < 1

3 . Furthermore, we’ll see
that there is an e�cient algorithm to �nd the sparse vector x satisfying Rx = b.

De�nition 5.2. A vector z ∈ Rn is mostly s-sparse if there is an index set J ⊆ [n] with |J| ≤ s
such that ∑

i∈J

|zi| ≥
∑
i<J

|zi|.

By de�nition, a matrix with the s-restricted isometry property approximately preserves the 2-
norm of every s-sparse vector. Our next lemma shows that the length of every mostly s-sparse
vector is also approximately preserved, albeit with a worse approximation factor, if we make
the stronger assumptions that the matrix satis�es the (3s)-restricted isometry property and that
ε < 1

3 . (The upper bound on ε is used to ensure that the constant factor on the right side of
Inequality (35) below is strictly positive.)
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Lemma 5.4. Suppose A is a matrix that satis�es the (3s)-restricted isometry property with constant
ε > 0. If z is mostly s-sparse then

‖Az‖2 ≥
1
2

(√
1 − ε −

√
1+ε

2

)
‖z‖2. (35)

Proof. Without loss of generality assume that the coordinates of z are ordered such that |z1| ≥

|z2| ≥ · · · ≥ |zn|. Also assume without loss of generality that n = (2m + 1)s for some positive
integer m. (Otherwise, pad the vector z with zeros and increas the number of columns of A from
n to (2m + 1)s, while continuing to satisfy the restricted isometry property.)
Break the coordinate range [n] = [(2m+1)s] into m+1 blocks J0, J1, . . . , Jm such that J0 consists of
the �rst s coordinates, J1 consists of the next 2s coordinates, J2 consists of the next 2s coordinates
after that, and so on. In other words,

J` = {i | i > 0, (2` − 1)s < i ≤ (2` + 1)s}.

Let z` be a vector obtained from z by preserving the coordinates in block J` and setting all other
coordinates to zero. In other words,

(z`)i =

zi if (2` − 1)s < i ≤ (2` + 1)s
0 otherwise.

Since z is mostly s-sparse, and we are assuming the coordinates are sorted so that |z1| ≥ |z2| ≥

· · · ≥ |zn|, we have
‖z0‖1 ≥ ‖z1 + z2 + · · · + zm‖1. (36)

Another useful observation stemming from the way coordinates are ordered is that ‖zi+1‖∞ ≤

2s · ‖zi‖1, because the absolute value of every coordinate of zi+1 is less than or equal to the ab-
solute value of every coordinate of zi. Combining this observation with the inequality ‖zi+1‖2 ≤√

2s‖zi+1‖∞, we obtain
‖‖zi+12 ≤

1
√

2s
‖zi‖1.

Now, we can bound ‖Az‖2 from below as follows.

‖Az‖2 = ‖A(z0 + z1) + Az2 + Az3 + · · · + Azm‖2

≥ ‖A(z0 + z1)‖2 −
(
‖‖Az22 + ‖Az3‖ + · · · + ‖Azm‖

)
≥
√

1 − ε‖z0 + z1‖2 −
√

1 + ε
(
‖z2‖2 + ‖z3‖2 + · · · + ‖zm‖2

) (37)

≥
√

1 − ε‖z0‖2 −

√
1 + ε

2s
(
‖z1‖1 + ‖z2‖1 + · · · + ‖zm−1‖1

)
=
√

1 − ε‖z0‖2 −

√
1 + ε

2s
‖z1 + z2 + · · · + zm−1‖1

≥
√

1 − ε‖z0‖2 −

√
1 + ε

2s
‖z0‖1. (38)

In line (37) we have used the inequalities
√

1 − ε‖‖z0 + z12 ≤ ‖A(z0 + z1)‖2 and
√

1 + ε‖zi‖2 ≥

‖Azi‖2, both of which are justi�ed by the (3s)-restricted isometry property with constant ε.
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Let σ be a vector in {−1, 0, 1}n with the same sign pattern and sparsity pattern as z0, meaning
that

σi =


1 if z0i > 0
0 if z0i = 0
−1 if z01 < 0.

Then 〈σ, z0〉 = ‖z0‖1, so the Cauchy-Schwartz inequality implies

‖z0‖1 ≤ ‖σ‖2 ‖z0‖2 =
√

s ‖z0‖2.

Substituting this bound into inequality (38) above, we �nd that

‖Az‖2 ≥
√1 − ε −

√
1 + ε

2

 ‖z0‖2. (39)

To conclude the proof of the lemma we need to show ‖z0‖2 ≥
1
2‖z‖. Let t = 1

s ‖z0‖1 = 1
s (|z1| + |z2| + · · · + |zs|)

and observe t ≥ |zs|. Every component of the vector w = 1
t (z1 + z2 + · · · + zm) belongs to the in-

terval [−1, 1], because |zi| ≤ |zs| ≤ t for i > s. Hence,

‖w‖22 =

n∑
i=1

w2
i ≤

n∑
i=1

|wi| = ‖w‖1

‖z − z0‖
2
2 = t2‖w‖22 ≤ t2‖w‖1 = t‖z1 + · · · + zm‖1 ≤ t‖z0‖1 =

1
s
‖z0‖

2
1 ≤ ‖z0‖

2
2. (40)

By the triangle inequality, ‖z‖2 ≤ ‖z0‖2 + ‖z − z0‖2. Combined with Inequality (40), this implies
‖z‖2 ≤ 2‖z0‖2 and completes the proof of the lemma. �

We will use Lemma 5.4 to analyze the following algorithm for sparse recovery: of all the vectors
x that satisfy Rx = b, output one with minimum L1 norm. The L1 norm is a convex function, so
the problem can be solved e�ciently using a convex minimization algorithm, such as gradient
descent.

Proposition 5.5. Suppose R is a matrix that satis�es the (3s)-restricted isometry property with
constant ε < 1

3 , x0 is an s-sparse vector, and b = Rx0. Among the solutions of the equation Rx = b,
the vector x0 is the unique one with minimum L1 norm.

Proof. Suppose x1 is a solution of minimum L1 norm to the equation Rx = b. We must prove that
x1 = x0. Let z = x1 − x0, and observe that Rz = Rx1 − Rx0 = b − b = 0. Let J = {i | x0i , 0} and
observe |J| ≤ s. We have

‖x1‖1 =

n∑
i=1

|x1i| =

n∑
i=1

|x0i + zi| =
∑
i∈J

|x0i + zi| +
∑
i<J

|zi|

≥
∑
i∈J

|x0i| −
∑
i∈J

|zi| +
∑
i<J

|zi| = ‖x0‖1 −
∑
i∈J

|zi| +
∑
i<J

|zi|.

42



Since ‖x1‖1 ≤ ‖x0‖1 by our choice of ‖x1‖, it follows that ∑i∈J |zi| ≥
∑

i<J |zi|, i.e. z is mostly s-sparse.
By Lemma 5.4,

0 = ‖Rz‖2 ≥
1
2

√1 − ε −

√
1 + ε

2

 ‖z‖2.
Our assumption ε < 1

3 implies 1 − ε > 1+ε
2 , so the factor 1

2

(√
1 − ε −

√
1+ε

2

)
on the right side is

strictly positive. It follows that ‖z‖2 = 0, so 0 = z = x1 − x0, as desired. �

5.3 Data Streaming and Sketching

The random projections analyzed in Section 5.1 and Section 5.2 bear some resemblance to the
random hash functions used in data structures and load balancing. In this section we survey
some of the applications of hash functions to the analysis of datasets that are too large to �t in
the computer’s memory all at once.
In the streaming model of computation, an algorithm observes a sequence a1, a2, . . . , an of data
items, each represented by at most b bits. Thus, the set of potential data items (called “tokens”
henceforth) has size m = 2b. The algorithm has a working memory of size s bits, where s is
bounded by a polynomial function of b and log(n). Hence it is infeasible to store each data item,
which would require space s ≥ b · n, and it’s also infeasible to store a count of how many times
each token was seen in the data stream, which would require space s ≥ 2b log(n).
Some of the typical objectives of streaming algorithms are to �nd the most frequently occurring
element (or elements) in the data stream, approximate the number of distinct elements, or ap-
proximate the pth frequency moment, ∑ j f p

j , where f j denotes the number of occurrences of the
token j in the stream.

5.3.1 Finding frequent elements

To illustrate the model, we begin by presenting an algorithm of Misra and Gries that uses space
s = O(k(b + log n)) to �nd every token that occurs more than n/(k + 1) times in the stream. The
algorithm allocates its storage space for a k-tuple of tokens b1, . . . , bk, and a k-tuple of counters,
c1, . . . , ck. Initially each pair (b j, c j) is initialized to (⊥, 0), where ⊥ denotes a null symbol that
doesn’t belong to the set of tokens. While the algorithm is processing the stream, if it sees one
of the tokens b1, . . . , bk then it increments the corresponding counter. Otherwise, if one of the
counters c j is equal to zero, it stores the new element as b j and sets c j to 1. Otherwise, if all
of the counters are strictly positive, it decrements each of them. When the algorithm �nishes
processing the stream, it outputs the set of all tokens that have positive counters.
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1: Initialize (b j, c j) = (⊥, 0) for j = 1, 2, . . . , k.
2: for i = 1, 2, . . . , n do
3: if ai = b j for some j ∈ [k] then
4: c j ← c j + 1
5: else if c j = 0 for some j ∈ [k] then
6: b j ← ai

7: c j ← 1
8: else
9: Decrement c j to c j − 1 for each j ∈ [k].

10: end if
11: end for
12: Output {b j | c j > 0}.

Proposition 5.6. The output of the Misra-Gries algorithm contains every token that occurs more
than n/(k + 1) times in the data stream (and potentially some tokens that occur fewer than n/(k + 1)
times).

Proof. Picture marking elements of the sequence a1, a2, . . . , an as follows. Initially all elements
are unmarked. At the start of the loop iteration that processes element ai, it becomes marked.
There are three cases for what could happen during the loop iteration. In the �rst two cases, if
ai ∈ {b1, . . . , bk} or if ai < {b1, . . . , bk} but c j = 0 for some j, then ai remains marked. In the third
case, if ai < {b1, . . . , bk} and c j > 0 for all j, then we remove the mark from ai, and we also remove
red marks from the earliest marked copy of each of the tokens b1, . . . , bk.
We claim that at all times, there are c j marked copies of b j for each j ∈ [k], and no token other than
b1, . . . , bk is marked. The proof is by induction on i. In the base case i = 0, no tokens are marked
and c j = 0 for all j. For the induction step, if ai belongs to the set {b1, . . . , bk} or is inserted into
that set, then it remains marked at the end of the loop iteration and the corresponding counter
c j is incremented. If ai doesn’t belong to the set {b1, . . . , bk} and c j > 0 for all j, then the mark
is removed from ai and (by the induction hypothesis) there is at least one marked copy of b j for
every j ∈ [k], so a mark is removed from one copy of each b j as c j is decremented.
Each time a loop iteration removes any marks, it removes k + 1 of them. Since an element of the
sequence is only marked once and its mark is removed at most once, there are at most n/(k + 1)
loop iterations in which marks are removed. If a token appears strictly more than n/(k + 1) times
in the sequence, then some copies of that token are marked at the end of the �nal loop iteration,
so that token must be one of b1, . . . , bk. �

5.3.2 Estimating the number of distinct elements

The Misra-Gries algorithm is atypical of streaming algorithms because it’s deterministic. Gener-
ally a streaming algorithm’s objective can’t be achieved deterministically within the given space
bound, so these algorithms use randomness and are usually evaluated according to the PAC (prob-
ably approximately correct) objective: one wants to show that with probability at least 1− δ, the
algorithm’s output approximates the target quantity with relative error ε or less.
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Here’s a famous example due to Flajolet and Martin. The algorithm estimates the number of
distinct tokens in the data stream. Note that this number might be as large as m = 2b, but we
aim to estimate the number of distinct token in space s = poly(b, log n), so keeping a list of every
distinct token encountered in the stream is not an option. Instead, we will use a hash function
h : [m]→ [M], for some large integer M. For the sake of building intuition, suppose that h( j) were
an independent, uniformly distributed element of [M] for each j ∈ [m]. Storing the description
of such a hash function would require m log(M) bits of space, exceeding the space requirement
of our algorithm, but for now let’s just see what could be done with such a function h. Later we’ll
worry about using a hash function whose description can be stored in much less space.
The key observation is that if there are d distinct tokens in the stream, then the random variable
Z = min{h(ai) | 1 ≤ i ≤ n} is on the order of M

d . In fact, if we assume without loss of generality
that the d distinct tokens belonging to the stream are a1, . . . , ad, then for any k ∈ [M] we can
de�ne the random variables

Xik =

1 if h(ai) ≤ k
0 otherwise

Yk =

d∑
i=1

Xik = number of distinct tokens whose hash value is ≤ k.

Then, we make the following observations.

1. E[Xik] = k
M .

2. E[Yk] = dk
M .

3. Var[Yk] =
dk(M−k)

M2 < dk
M . This is because

Var[Yk] = E[Y2
k ] − E[Yk]2 =

d∑
i=1

d∑
j=1

E[XikX jk] −
d2k2

M2

=

d∑
i=1

E[Xik] +

d∑
i=1

∑
j,i

E[XikX jk] −
d2k2

M2

= d ·
k
M

+ d(d − 1) ·
k2

M2 − −
d2k2

M2

= d ·
k
M
− d ·

k2

M2 =
dk(M − k)

M2 .

For future reference, we remark that we only used two properties of the random hash function h
that we used when proving the three properties above.

1. For every token ai, the hash value h(ai) is uniformly distributed in [M]. This was used to
establish that E[Xik] = k

M .

2. For every two distinct tokens ai, a j, the hash values h(ai) and h(a j) are independent ran-
dom variables. This was used in the calculation of Var[Yk], when we applied the identity
E[XikX jk] = E[Xik] · E[X jk] =

(
k
M

)2
.
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A probability distribution over hash functions is called 2-universal if it satis�es these two prop-
erties. Below, we see how to construct randomized hash functions that satisfy both of these
properties but can be stored in exponentially less space than a purely random hash function. For
now, we proceed with the design and analysis of algorithms for approximating the number of
distinct elements in a data stream, using any 2-universal randomized hash function h.
Recall that Z = min{h(ai) | i ∈ [n]}. As a �rst attempt at estimating d, we can use the estimate
M/Z. By Markov’s Inequality, if k = bM/6dc, then

Pr
(

M
Z > 6d

)
= Pr

(
M
6d > Z

)
= Pr (Yk ≥ 1) ≤ E[Yk] = dk

M ≤
1
6 . (41)

On the other hand, by Chebyshev’s Inequality, if ` = b6M/dc,

Pr
(

M
Z <

d
6

)
= Pr

(
6M
d ≤ Z

)
= Pr(Y` = 0) ≤ Pr(|Y` − EY`| ≥ EY`)

≤
Var(Y`)
(EY`)2

<
EYell

(EY`)2 =
1
EY`

=
M
d`
≤

1
6

+
1

6M − 5
. (42)

Hence, the probability that the estimate M/Z lies outside the interval [d/6, 6d] is at most 1
3 + 1

6M−5 .

We can obtain a better estimate of d using Zt, the tth smallest of the values {h(ai)}ni=1, for t >
1. Intuitively, the reason is that Zt “aggregates a greater amount of randomness”, namely the
randomness in the positions of the t smallest elements rather than just the smallest one. To make
this intuition a bit more precise, if we set k = btM/dc such that the expected number of elements
that hash into the set [k] is E[Yk] = dk/M ≈ t, then the variance Var[Yk] is less than t, so the
probability that Yk di�ers from its expected value by more than εt is at most 1

ε2t by Chebyshev’s
Inequality. For t > 1

ε2δ
, this probability will be less than δ. This argument doesn’t directly lead to

the conclusion that tM/Zt approximates d within ε, but a slight variation on the argument, using
Yq and Yr for q = b tM

(1+ε)d c and r = b tM
(1−ε)d c, does the trick.

Algorithm 3 Algorithm for estimating distinct elements
1: Set t = d

2(1+ε)
ε2δ
e.

2: Choose M ≥ m and randomly sample h : [m]→ [M] from a 2-universal hash family.
3: Initialize (Z1,Z2, . . . ,Zt) = ⊥t.
4: for i = 1, . . . , n do
5: Observe ai and calculate z = h(ai).
6: if z < Zt then
7: Update Z1, . . . ,Zt to be the t smallest hash values yet seen, in increasing order.
8: end if
9: end for

10: Output tM/Zt.

Note that the space required by the algorithm is equal to the t log(M) plus the amount of space
required to store h. Later we will see that the space required for storing h is 2 log(M) when M
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is a prime number. Since there is always a prime number between m and 2m, we can ensure
log(M) ≤ log(m) + 1. Also t ≤ 2

ε2δ
+ 1, so the space required by the algorithm is s = O

(
log m
ε2δ

)
.

Proposition 5.7. When Algorithm 3 is run on a stream with d distinct elements, the probability
that it outputs an answer in the range [(1 − ε)d, (1 + ε)d] is at least 1 − δ.

Proof. Set q = b tM
(1+ε)d c and r = b tM

(1−ε)d c. If the algorithm outputs an estimate greater than (1 + ε)d
it means that Zt ≤ q so Yq ≥ t. If it outputs an estimate less than (1 − ε)d it means that Zt > r so
Yr < t. We have E[Yq] = dq/M and Var[Yq] < E[Yq], so by Chebyshev’s Inequality,

Pr(Yq ≥ t) ≤
dq/M

(dq/M − t)2 ≤
t/(1 + ε)

(dq/M − t)2 . (43)

Similarly,
Pr(Yr < t) <

dr/M
(dr/M − t)2 ≤

t/(1 − ε)
(dr/M − t)2 . (44)

To estimate the quantities on the right sides of inequalities (43) and (44), we use

dq
M ≤

t
1+ε

= t − εt
1+ε(

dq
M − t

)2
≥

ε2t2

(1 + ε)2 =
ε2t

1 + ε
·

t
1 + ε

dr
M ≥

t
1−ε −

d
M ≥ t + εt

1−ε − 1(
dr
M − t

)2
≥

(
εt

1−ε − 1
)2

=
(
εt−1+ε

1−ε

)2
.

Hence,

Pr(Yq ≥ t) ≤
t/(1 + ε)

(dq/M − t)2 ≤
1 + ε

ε2t

Pr(Yr > t) <
t/(1 − ε)

(dr/M − t)2 ≤
(1 − ε)t

(εt − 1 + ε)2 .

To estimate the right side of the second line, we use

ε2t > 1 > 1 − ε2 = (1 − ε)(1 + ε)
ε

1+ε
> 1−ε

εt(
1 − ε

1+ε

)2
<

(
1 − 1−ε

εt

)2

1−ε
1+ε

= 1 − 2ε
1+ε

<
(
1 − 1−ε

εt

)2

(1−ε)ε2t2

1+ε
< (εt − 1 + ε)2

(1−ε)t
(εt−1+ε)2 <

1+ε
ε2t .

Hence, both Pr(Yq ≤ t) and Pr(Yr > t) are less than or equal to 1+ε
ε2t . The choice of t = d

2(1+ε)
ε2δ

ensures that 1+ε
ε2t ≤

δ
2 . Hence, the probability that the algorithm fails to output a number in the

range [(1 − ε)d, (1 + ε)d] is at most δ
2 + δ

2 = δ, as desired. �
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5.3.3 A 2-universal hash family based on modular arithmetic

In this section we present a simple example of a 2-universal family of hash functions [m]→ [M]
when M is a prime number greater than or equal to m. In that case, for any a, b ∈ [M] de�ne
hab(x) ≡ ax + b (mod M). Note that one can store a description of the entire hash function hab

using 2 log(M) bits, simply by storing the coe�cients a and b.

Lemma 5.8. If a, b ∈ [M] are sampled independently and uniformly at random, then the distribu-
tion of the random hash function h = hab is 2-universal.

Proof. We need to prove that if x , y ∈ [M], then h(x) and h(y) are uniformly distributed in [M]
and they are independent. In other words, we must prove for each pair of elements i, j ∈ [M],

Pr(h(x) = i and h(y) = j) = 1
M2 .

To do so, we recall that M is prime and x , y. Since x− y is a non-zero integer between −(M − 1)
and M−1, it is not divisible by M hence there exists some integer z such that z(x−y) ≡ 1 (mod M).
The equations h(x) = i and h(y) = j imply i − j = h(x) − h(y) ≡ a(x − y) (mod M), which implies
z(i − j) ≡ az(x − y) ≡ a (mod M). Hence, a ≡ z(i − j) (mod M) and b ≡ i − ax = i − z(i − j)x
(mod M) constitute the unique solution (mod M) to h(x) = i and h(y) = j. The probability that
this exact pair a, b is sampled when we draw a and b independently and uniformly at random
from [M] is 1

M2 , as desired. �

5.3.4 Sketching token frequencies

Data sketching is an algorithmic paradigm that combines streaming with data structures. As
before, an algorithm processes a stream of tokens, a1, . . . , an, taking values in [m], and it is allowed
to store s = O(poly(log n, log m)) bits of information about the stream. However, rather than
wanting to estimate a single attribute of the stream, such as the number of distinct elements, the
algorithm designer’s objective is to be able to answer queries about the stream afterward. In this
setting, the s-bit internal representation of the stream is called a sketch of the data.
Consider the task of sketching the frequency of each token in the data stream. In other words,
the algorithm will be asked to answer queries of the form, “How many times did x occur in
the stream?” and the goal will be to output an approximately correct answer with probability
1 − δ. In this section we will present two di�erent algorithms for this task. The algorithms have
di�erent bene�ts and drawbacks. The �rst algorithm has smaller space complexity and only
su�ers from one-sided error, i.e. it can overestimate the number of occurrences of x but it never
underestimates. The second algorithm requires more space and su�ers from two-sided error, but
it satis�es a signi�cantly stronger approximate-correctness property.
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Algorithm 4 Count-Min Sketch
1: Given positive integers B, t . . .
2: Sample h1, . . . , ht : [m]→ [B] independently from a 2-universal hash family.
3: Initialize a two-dimensional array C of dimensions B × t, setting C[k, `] = 0 for each k, `.
4: for each i ∈ [n] do
5: Observe ai.
6: for each ` ∈ [t] do
7: Compute k = h`(ai).
8: Increment C[k, `] by 1.
9: end for

10: end for
11: When queried about frequency of token x, return min`∈[t]{C[h`(x), `]}.

The �rst algorithm we’ll analyze, called the Count-Min Sketch, is based on a hashing scheme
presented in Algorithm 4. The idea behind the algorithm is simple: we choose t independent
random hash functions h1, . . . , ht, with range [B] for some moderately large B, and for each “hash
bucket” k ∈ [B] we count how many elements of the stream are hashed to k by each of the t
functions. If h is a hash function and x is a token appearing r times in the stream, then the
counter for bucket h(x) will reach a value which is at least t. To the extent that the counter
exceeds t, the di�erence is due to hash collisions — other elements of the stream that hash to
the same bucket as x. For large M, this will typically be only a small fraction of the stream. By
repeating this counting procedure in parallel using t di�erent hash functions, we minimize the
probability of getting an anomalously large number of hash collisions.

Lemma 5.9. The CountMin sketch uses space s = O(Bt log(mn)) and satis�es the following guar-
antee for every x ∈ [m]: if the true frequency of x in the stream is denoted by fx, the sketch’s estimate
f̂x satis�es fx ≤ f̂x with probability 1 and f̂x ≤ fx + 2n

B with probability at least 1 − 2−t.

Proof. The space complexity bound follows from the observation that the algorithm only needs
to store an array of dimensions B× t, with each element of the array being an integer in the range
0, 1, . . . , n, plus descriptions of t hash functions each requiring space O(log m).
For each ` ∈ [t], the counter C[h`(x), `] is incremented each time x appears in the stream —
fx times in total — and it is also incremented each time another token y , x appears in the
stream and satis�es h`(y) = h`(x). There are n − fx tokens other than x in the stream, and for
each of them the probability that h`(y) = h`(x) is 1/B, so by linearity of expectation we have
E[C[h`(x), `] − fx] = (n − fx)/B. Then, by Markov’s Inequality,

Pr
(
C[h`(x), `] − fx >

2n
B

)
≤ 1

2 .

Since the hash function {h1, . . . , ht} are mutually independent,

Pr
(
∀` ∈ [t] C[h`(x), `] − fx >

2n
B

)
≤

(
1
2

)t
,

and the lemma follows. �
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Corollary 5.10. For any ε, δ > 0 the Count-Min Sketchwith parameters B = d 2
ε
e and t = dlog2(1/δ)e

achieves the following guarantee: for any token x, with probability at least 1 − δ the estimated fre-
quency of x di�ers from the true frequcency by no more than εn. The space complexity of the sketch
with these parameters is O

(
log(mn) log(1/δ)/ε

)
.

The second algorithm we’ll analyze uses more space, namely O
(
log n log(1/δ)/ε2

)
, but achieves

a stronger approximate-correctness guarantee: with probability at least 1 − δ, the estimate of fx

di�ers from the true value by at most ε‖f‖2. Here, f denotes the “frequency vector” of the stream,
an m-dimensional vector whose xth component fx is the frequency of token x in the stream. Since
the sum of frequencies of all tokens is n, we have f1 = n. Note that f2 ≤ f1 for any vector f, so the
error bound of ε‖f‖2 is never worse than the εn error bound of the Count-Min Sketch. However,
‖f‖2 can be much smaller than n; for example, when the tokens are uniformly distributed we have
‖f‖2 ≈ n

min{
√

m,
√

n} .

Algorithm 5 Count Sketch
1: Given positive integers B, t . . .
2: Sample h1, . . . , ht : [m]→ [B] independently from a 2-universal hash family.
3: Sample g1, . . . , gt : [m]→ {±1} independently from a 2-universal hash family.
4: Initialize a two-dimensional array C of dimensions B × t, setting C[k, `] = 0 for each k, `.
5: for each i ∈ [n] do
6: Observe ai.
7: for each ` ∈ [t] do
8: Compute k = h`(ai).
9: C[k, `]← C[k, `] + g`(ai).

10: end for
11: end for
12: When queried about frequency of token x, return the median of the multiset {g`(x) ·

C[h`(x), `]}.

The intuition for the Count Sketch is similar to that for the Count-Min Sketch with one important
di�erence. As before, if x occurs fx times in the stream, then with each occurrence we add g`(x) to
C[h`(x), `], resulting in a total of g`(x) · fx. Since g`(x)2 = 1, this means that the random variable
g`(x) ·C[h`(x), `] equals fx +Z, where the random variable Z accounts for the “noise” due to other
tokens y , x that are hashed by h` to the same bucket as x, similarly to the analysis of the Count-
Min Sketch. However, the key di�erence is that the noise variable Z in the Count Sketch is a sum
of randomly-signed contributions from the various tokens that occupy the same hash bucket as
x. In aggregate we can expect some of these noise terms to cancel each other out because they
are oppositely signed. Hence, we might hope that the Count Sketch su�ers from less additive
error when estimating the frequency fx. The following analysis substantiates that hope.

Lemma 5.11. The Count Sketch uses space s = O(Bt log(mn)) and satis�es the following guarantee
for every x ∈ [m]: if the true frequency of x in the stream is denoted by fx, the sketch’s estimate f̂x

satis�es | f̂x − fx| ≤

√
3
B‖f‖2 with probability at least 1 − e−t/18.
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Proof. Fix x ∈ [m]. For any y ∈ [m] and ` ∈ [t] de�ne random variables Xy` and Zy` by

Xy` =

1 if h`(y) = h`(x)
0 if h`(y) , h`(x)

Zy` = g`(x)g`(y)Xy` fy.

In words, Xy` equals 1 or 0 depending whether or not h` has a hash collision between y and x,
and Zy` is a random variable representing the amount (positive or negative) that occurrences
of token y in the stream contribute to the value of g`(x) · C[h`(x), `]. To substantiate the latter
interpretation, observe that

C[h`(x), `] =

m∑
y=1

gy(`)Xy` fy

because token y occurs fy times in the stream, and each of these occurrences contribute gy(`) to
the counter C[h`(x), `] if and only if Xy` = 1, otherwise each occurrence of y in the stream has
zero contribution to C[h`(x), `].
The random variable Zx` is deterministically equal to fx because g`(x)2 = 1 and Xx` = 1. As for
Zy` when y , x, we have

E[Zy`] = E[g`(x)g`(y)Xy` fy] = E[g`(x)] · E[g`(y)] · E[Xy`] · fy = 0, (45)

where we have used the fact that g`(x), g`(y), and Xy` are mutually independent, and thatE[g`(x)] =

E[g`(y)] = 0. To verify the mutual independence, observe that Xy` depends only on the hash func-
tion h` which is independent of g`, and the values g`(x), g`(y) are independent of one another by
the pairwise-independence property of g`.

Using linearity of expectation we have

E[g`(x) ·C[h`(x), `]] =

m∑
y=1

E[Zy`] = fx +
∑
y,x

E[Zy`] = fx. (46)

To continue with the analysis of the Count Sketch, the next step is to analyze the variance of
g`(x) ·C[h`(x), `] and apply Chebyshev’s Inequality. We have

Var[g`(x) ·C[h`(x), `]] = Var[ fx +
∑
y,x

Zy`] = Var[
∑
y,x

Zy`]

= E


∑

y,x

Zy`


2

=
∑
y,x

∑
w,x

E[Zy`Zw`] =
∑
y,x

E[Z2
y`] +

∑
y,x

∑
w<{x,y}

E[Zy`Zw`].

Now,
E[Z2

y`] = E[X2
y` f 2

y ] = E[Xy` f 2
y ] = 1

B f 2
y ,
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since Xy` = 1 with probability 1
B and Xy` = 0 otherwise. (Here we have used the fact that h` is

drawn from a 2-universal hash family, so for any y , x the probability of h`(y) = h`(x) is 1/B.)
Furthermore, if w < {x, y} then

E[Zy`Zw`] = E[g`(y)g`(w)Xy`Xw` fy fw] = E[g`(y)] · E[g`(w)] · E[Xy`Xw`] · fy fw = 0,

where we have again used the mutual independence of the random variables g`(y), g`(w), and
Xy`Xw`. (Note that Xy` and Xw` may be correlated with one another, we only need to use the fact
that their product is independent of g`(y) and g`(w), which holds because Xy`Xw` depends only
on the hash function h`, which is independent of g`.) Substituting the calculated values of E[Z2

y`]
and E[Zy`Zw`] into the variance calculation, we �nd that

Var[g`(x) ·C[h`(x), `]] =
1
B

∑
yneqx

f 2
y ≤

1
B
‖f‖22.

By Chebyshev’s Inequality,

Pr
(
|g`(x) ·C[h`(x), `] − fx| ≥

√
3
B ‖f‖2

)
≤

Var[g`(x) ·C[h`(x), `]]
3
B ‖f‖

2
2

=
1
3
. (47)

We have shown that each of the individual estimates g`(x) · C[h`(x), `] has probability at most 1
3

of di�ering from the target value fx by more than
√

3/B · ‖f‖2. There are t such estimates, one for
each ` ∈ [t], and they are independent random variables. In order for their median to be less than
fx −
√

3/B · ‖f‖2 or greater than fx +
√

3/B · ‖f‖2, at least t/2 of the estimates must di�er from fx

by more than
√

3/B · ‖f‖2. To �nish up, we use the Hoe�ding Bound to show that the probability
of this happening is less than e−t/18. In more detail, let W` be a random variable which equals 1
if |g`(x) · C[h`(x), `] − fx| ≥

√
3/B · ‖f‖2, otherwise W` = 0. Inequality (47) says that E[W`] ≤ 1

3 .
Since the random variables {W` : ` ∈ [t]} are mutually independent, Hoe�ding’s Inequality says
that

Pr
(
W1 + · · · + Wt ≥

t
2

)
= Pr

(
W1 + · · · + Wt ≥ E[W1 + · · · + Wt] + t

6

)
≤ e−2(t/6)2/t = e−t/18.

�

Corollary 5.12. For any ε, δ > 0 the Count-Min Sketch with parameters B = d 3
ε2 e and t =

d18 ln(1/δ)e achieves the following guarantee: for any token x, with probability at least 1− δ the es-
timated frequency of x di�ers from the true frequcency by no more than ε‖f‖2. The space complexity
of the sketch with these parameters is O

(
log(mn) log(1/δ)/ε2

)
.
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