
CS 4850 Hessians and convex optimization

Mathematical Foundations for the Information Age Prepared by Abhay Singh

These notes cover some ideas about unconstrained minimization on convex functions. The

material is adapted from [1].

1 Unconstrained minimization

In a previous lecture, we have seen an analysis of the convergence of gradient descent, with

an upper bound on the number of iterations that is quadratic in 1/ε. In this lecture we will

show, with some stronger assumptions, an upper bound on the number of iterations that is

logarithmic in 1/ε. First we begin with some definitions.

1.1 Hessians and convexity

The Hessian of a function is a matrix encoding all of its second partial derivatives. We

will define it in three different ways, abusing notation slightly and representing all three

interpretations of the Hessian using the notation Hf .

The first interpretation is the simplest, and it applies when V = Rn. Then the Hessian is

simply the matrix of second partial derivatives of f at x:

[Hfx]ij =
∂2f(x)

∂xi∂xj

.

Since f is continuously differentiable, Hfx is symmetric.

The second interpretation applies whenever V has a non-degenerate inner-product structure,

so that the gradient of f is well defined.

Definition 1.1. If (V, ∥ · ∥) is a normed vector space and f : V → R is twice continuously

differentiable, the Hessian of f at x ∈ S, written Hfx, is a linear transformation satisfying

for all y,

∇fx+y = ∇fx +Hfx(y) + g(y)

where the remainder g(y) vanishes to first order at 0. In other words, the Hessian is the

Jacobian of the gradient.

The final definition, and the most general, does not even require an inner product structure

on V . It defines the Hessian as a bilinear function V × V → R constituting the second-order
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term in a local Taylor expansion of f ,

f(x+ y) = f(x) + dfx(y) +
1

2
Hfx(y,y) + r(y)

where the remainder term r(y) vanishes to second order at y = 0.

The Hessian describes the local curvature of a function of many variables.

Lemma 1.2. If K ⊆ V is a closed, convex subset of V , a twice-differentiable function

f : K → R is convex if and only if Hfx is positive semi-definite for all x ∈ K.

Proof. We prove one direction. Assume Hfx is positive semi-definite for all x ∈ K. By

Taylor’s theorem we have that

f(y) = f(x) + ⟨∇fx,y − x⟩+ 1

2
⟨y − x,Hfz(y − x)⟩

for some z on the closed line segment from x to y. Since Hfx is positive semi-definite, the

last term is non-negative, so this implies

f(y)− f(x) ≥ ⟨∇fx,y − x⟩ = dfx(y)− dfx(x).

The other direction is left as an exercise.

As a simple example, consider the quadratic function f : Rn → R,

f(x) =
1

2
⟨x, Px⟩+ ⟨x,q⟩+ r, (1.1)

where P ∈ Rn×n is symmetric positive semi-definite, q ∈ Rn, and r ∈ R. Its gradient is

∇fx = Px + q, so its Hessian is Hfx = P and is independent of x. In other words, the

second-order Taylor approximation of a quadratic function is the function itself. If P is

positive definite (instead of positive semi-definite), the equation ∇fx = Px+ q = 0, which is

a necessary and sufficient condition for x to be a minimizer of f , admits a unique solution,

x⋆ = −P−1q.

A special case of minimizing a quadratic is the least-squares problem, which appears very

frequently in a variety of contexts,

minimize ∥Ax− b∥22 = ⟨x, A⊤Ax⟩ − 2⟨x, A⊤b⟩+ ∥b∥22.

The optimality condition leads to the famous normal equations,

A⊤Ax⋆ = A⊤b.
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1.2 Strong convexity and smoothness

As the name suggests, strong convexity is a stronger assumption than convexity. In particular,

the assumption made on the Hessian is stronger.

Definition 1.3. If K ⊆ V is a closed, convex subset of V , a twice continuously differentiable

function f : K → R is said to be α-strongly convex if the smallest eigenvalue λmin of Hfx is at

least α > 0 for all x ∈ K. Additionally, f is said to β-smooth if the largest eigenvalue λmax of

Hfx is no greater than β for all x ∈ K. The condition number of f is given by κ = β/α ≥ 1.

If we allowed α = 0, then this reduces to the condition of convexity, since for a symmetric

matrix λmin = 0 is an equivalent condition to being positive semi-definite.

For the quadratic function example given in Eq. (1.1), the definitions show that f(x) =
1
2
⟨x, Px⟩ is α-strongly convex and β-smooth if the eigenvalues of P all lie in the interval [α, β].

In this case, the definition of the condition number κ coincides with the usual one, i.e., the

ratio λmax/λmin. If P was the identity matrix, κ = 1 and f is said to perfectly conditioned as

the level sets of f are perfectly concentric. If P had a large condition number κ≫ 1, then

the level sets will be elongated, and algorithms like gradient descent may take long to find

the minimum. Thus, the condition number κ can be thought of as a measure of difficulty of

the convex minimization problem.

An example of a function that is convex, but not strongly convex nor linear is f(x) =

(⟨a,x⟩)+ = max{⟨a,x⟩, 0} for a ̸= 0. In particular, ∇fx = 0 when ⟨a,x⟩ < 0, ∇fx = a when

⟨a,x⟩ > 0.

The conditions of strong convexity and smoothness give us the following.

Corollary 1.4. If K ⊆ V is a closed, convex subset of V , a twice continuously differentiable

function f : K → R that is α-strongly convex and β-smooth satisfies the following inequalities

for all y ∈ K:

1.

f(y) ≥ f(x) + ⟨∇fx,y − x⟩+ 1

2
α∥y − x∥2

2.

f(y) ≤ f(x) + ⟨∇fx,y − x⟩+ 1

2
β∥y − x∥2

i.e., f has local quadratic approximations that respectively lower- and upper-bound the function.

1.3 Gradient descent for strongly convex, smooth functions

We will now provide analysis for a modified version of gradient descent to minimize a function

f that is α-strongly convex and β-smooth with condition number κ = β/α. As before, we
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will assume there is some constant difference between the starting point and the optimal

value, i.e., f(x(0))− f(x⋆) ≤ D where x(0) is the starting point.

The difference between vanilla gradient descent and the algorithm presented below is that we

will take the locally optimal (or nearly-locally optimal) step at each iteration, in the following

sense. At each iteration, the algorithm moves in the direction of ∇fx until it reaches the

point along the ray {x− t∇fx | t ≥ 0} that minimizes f . This one-dimensional minimization

problem on the parameter t is called line search, although a more accurate name might be

ray search.

Algorithm 1 Gradient descent with line search
repeat

∆x← −∇fx
topt ← argmint≥0 f(x+ t∆x)
x← x+ topt∆x

until ∥∇fx∥2 ≤ 2εα
return x

The minimization problem that defines topt can be solved exactly in cases where there is

an exact analytical expression for the minimizer. Otherwise the minimization can be done

approximately, to very high precision, via binary search. The binary search procedure is

based on the observation that if we define y = ∇fx then the function g(t) = ⟨y,∇fx+ty⟩ only
changes sign once as t varies over [0,∞), and the sign change occurs at t = topt.

To see why the stopping criterion makes sense, note that the right-hand side of the strong

convexity inequality in Corollary 1.4 is minimized with respect to y for ỹ = x− 1
α
∇fx, and

so we have the following inequalities

f(y) ≥ f(x) + ⟨∇fx,y − x⟩+ 1

2
α∥y − x∥2

≥ f(x) + ⟨∇fx, ỹ − x⟩+ 1

2
α∥ỹ − x∥2

= f(x)− 1

2α
∥∇fx∥2.

In particular, the inequality holds for f(x) − f(x⋆) ≤ 1
2α
∥∇fx∥2, so ∥∇fx∥2 ≤ 2εα implies

f(x)− f(x⋆) ≤ ε, where ε is the desired level of accuracy.

To bound the number of iterations, we will show that the quantity f(x)− f(x⋆) decreases

by a prescribed multiplicative factor in each iteration. First, we will analyze the line search

procedure. From the smoothness inequality in Corollary 1.4, by setting y = x − t∇fx we

have that

f(x− t∇fx) ≤ f(x)− t∥∇fx∥2 +
1

2
βt2∥∇fx∥2.

The right-hand side of this inequality is a quadratic that is minimized with respect to t
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for t̃ = 1
β
and has minimum value f(x) − 1

2β
∥∇fx∥2. Since topt was selected to minimize

f(x− t∇fx) over t ≥ 0, we have the following inequality

f(x− topt∇fx) ≤ f(x)− 1

2β
∥∇fx∥2.

Subtracting f(x⋆) from both sides, we have

f(x− topt∇fx)− f(x⋆) ≤ f(x)− f(x⋆)− 1

2β
∥∇fx∥2,

but we have already seen from our discussion of the stopping criterion that ∥∇fx∥2 ≥
2α(f(x)− f(x⋆)), so it follows that

f(x− topt∇fx)− f(x⋆) ≤ f(x)− f(x⋆)− α

β
(f(x)− f(x⋆)) =

(
1− 1

κ

)
(f(x)− f(x⋆)).

In words, in each iteration, the difference between optimality f(x)− f(x⋆) shrinks by at least(
1− 1

κ

)
. Since κ ≥ 1, this is a well-defined and non-negative factor, and we observe that

for ‘ill-conditioned’ problems with large values of κ, the bound is not as tight. Applying the

inequality recursively, we have that

f(x(j))− f(x⋆) ≤
(
1− 1

κ

)j

(f(x(0))− f(x⋆))

where x(j) is the jth iterate, and thus in no more than log1− 1
κ
(ε/D) iterations we have

ε-optimality in the sense that f(x)− f(x⋆) ≤ ε. The base of this logarithm is hard to parse,

but we can bound it from above by a simpler expression, using the inequality ln(1− x) ≤ −x,
or equivalently, −1/ ln(1− x) ≤ 1/x,

log1− 1
κ
(ε/D) =

ln(ε/D)

ln
(
1− 1

κ

) =
ln(D/ε)

− ln
(
1− 1

κ

) ≤ κ ln

(
D

ε

)
.

The key things to notice about this upper bound are that it is linear in the condition number

and logarithmic in 1/ε. In contrast, the gradient descent algorithm from a previous lecture

had a number of iterations that was quadratic in 1/ε. Thus, the method is very fast when the

Hessian of the convex function is not too ill-conditioned; for example when κ is is a constant,

the number of iterations is merely logarithmic in 1/ε.

Another thing to point out is that our bound on the number of iterations has no dependence

on the dimension. Thus, the method is suitable even for very high-dimensional problems, as

long as the high dimensionality does not lead to an excessively large condition number.
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1.4 Newton’s method

Newton’s method is a powerful approach for unconstrained minimization, where we select our

descent direction as the Newton’s step, ∆xnt = −Hfx
−1(∇fx).

Newton’s method can be derived in many ways. One such is the minimization of the

second-order Taylor approximation. The second-order approximation f̂ of f at x is written

f̂(x+ y) = f(x) + ⟨∇fx,y⟩+
1

2
⟨y,Hfx(y)⟩,

which is a convex quadratic function of y, and is minimized when y = ∆xnt. The insight is

that if the function f is quadratic, then x+∆xnt is the exact minimizer of f . However, even if

the function f is only approximately quadratic, x+∆xnt is intuitively a good approximation

of the minimizer of f .

Another interpretation of the Newton’s step is as the solution to the linearized optimality

condition ∇fx⋆ = 0. For small y we have

∇fx+y ≈ ∇fx +Hfx(y) = 0

which is a set of linear equations in y, with solution y = ∆xnt. So the Newton step is what

must be added to the current x for the linearized optimality condition to hold. This suggests

that when x is near x⋆, the update x+∆xnt will be a good approximation of x⋆.

An important aspect of the Newton step is that it is equivariant to linear changes in coordinates.

Suppose we have a change-of-basis matrix B, and define a new function related by this change

of basis, f̃(y) = f(By) = f(x). Then

∇f̃y = B⊤∇fx, Hf̃y = B⊤HfxB

and so the Newton step of f̃ at y is given by

∆ynt = −(B⊤HfxB)−1B⊤∇fx = B−1∆xnt.

And we see that the Newton steps of f and f̃ are related by B, and further x + ∆xnt =

B(y +∆ynt). In contrast, we do not have a similar statement for gradient descent.

Newton’s method also gives a better bound on the number of iterations, as compared to

gradient descent with line search. We will not provide the details, but the bound looks like

D

γ
+ log2 log2(1/ε)

where as before, f(x(0))− f(x⋆) ≤ D with x(0) being the starting point. The value of γ < 1
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depends on the parameters of an approximate line search, but is not too small. The analysis

involves a ‘damped’ phase, in which the distance from optimum is reduced by a linear amount

in each step, and a quadratically convergent phase, in which the distance from is reduced

quadratically in each step. The value of log2 log2(1/ε) is reasonably bounded above by the

value 6, since machine-epsilon is usually 10−18, and log2 log2 10
18 ≈ 5.9.
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